# The Ripple Effect: ESG Decisions in Director Networks

Matías Braun \* <sup>1</sup> Vicente Corral <sup>† 2</sup>  $_{\S 4}$  Claudio Raddatz <sup>‡ 3</sup> Santiago Truffa

<sup>1,2,4</sup>ESE Business School, Universidad de los Andes <sup>3</sup>School of Economics and Business, Universidad de Chile

January 15, 2025

#### Abstract

We study the propagation of firms' Environmental, Social, and Governance (ESG) scores through director networks. Using detailed director-network data and a panel regression approach, we show that a firm's ESG ratings positively respond to those of its peer-director-connected firms. This transmission of ESG ratings through peer director networks differs from that through locality, industry, and interlocks. Firms are likelier to adopt ESG practices from peer-director firms that are financially successful or have influential boards, suggesting that value and values matter for ESG decisions. ESG adoption is also used strategically among competitors. A difference-in-differences approach provides additional evidence of the causal nature of this effect across diverse ESG dimensions. JEL Codes: G02, G3, L2, M14, R1

Keywords: ESG, Board Members, Social Network

<sup>\*</sup>E-mail: mbraun.ese@uandes.cl

<sup>&</sup>lt;sup>†</sup>E-mail: vcorral@fen.uchile.cl

<sup>&</sup>lt;sup>\*</sup>E-mail: clraddatz@fen.uchile.cl

<sup>&</sup>lt;sup>§</sup>E-mail: struffa.ese@uandes.cl

# 1 Introduction

Substantial literature has studied why firms engage in ESG-related actions.<sup>1</sup> The prominent views are that firms spend time and resources on these activities because they accrue financial benefits (the *value* view) or because critical stakeholders and decision-makers care for them (the *values* view) (Starks, 2023). Of course, these are not excluding channels, and both types of forces probably shape firms' actions.

Despite these advances, the process by which firms' decision-makers form their views about the convenience of ESG activities (*value*) or shape their preferences for them (*values*) has gathered less attention. Among these decision-makers, board members likely play a key role, and the literature on board influences has provided substantial evidence that they do not operate in a vacuum and learn from peers' actions, experiences, and preferences (Chiu et al., 2013; Foucault and Fresard, 2014; Hong et al., 2004; Leary and Roberts, 2014). It is, therefore, natural to conjecture that these forces would also influence the decisions to engage in ESG-related actions. If this is so, targeting and influencing key firms can be an effective policy tool.

This paper examines the role of inter-firm connections through board members in the propagation of ESG practices. We construct a proximity measure that captures the extent to which the board members of one firm have previously served alongside those of another. Using this measure, we investigate whether a firm's ESG score is influenced by the ESG performance of other firms to which it is closely linked through past professional interactions among their directors. We use two different, complementary approaches to document the role of peers for ESG propagation: panel data regressions and a differences-in-differences strategy.

In our panel data analysis, we introduce a measure of a firm's exposure to the ESG performance of other firms, termed Peer ESG Exposure, calculated as the proximity-weighted average of the (lagged) ESG scores of all other firms. This measure combines historical ESG

<sup>&</sup>lt;sup>1</sup>See Gillan et al., 2021 and Starks, 2023 for two excellent recent reviews on the topic.

scores of U.S. companies from LSEG Eikon with BoardEx network data at the individual director level. Using within-firm variation, we investigate whether a firm's ESG score is higher when it is more exposed to high-ESG firms, finding this to be the case across all ESG pillars (though the effect is not statistically significant for Governance). Additionally, Board Interlock ESG Exposure and Industry ESG Exposure are positively associated with a firm's ESG rating, but their effects are largely independent of that of the peers.

Aside from considering firm and year fixed-effects and other kinds of connections, to address endogeneity concerns further, we incorporate firm- and board-level time-varying controls and conduct instrumental variables regressions, concluding that the documented relationship is likely causal. Also, we show that ESG practices are influenced within the same category: exposure to environmental practices enhances environmental performance, social exposure boosts social practices, and governance exposure influences governance practices. This pillarspecific transmission highlights that ESG diffusion is targeted and not merely generic, mitigating concerns that the findings reflect broader characteristics correlated with aggregate ESG.

We explore three mechanisms behind the results that are linked to the motivations (value and values) for engaging in ESG practices: peer learning, social pressure, and strategic considerations. We show that the ESG actions of peers influence a firm's ESG practices more strongly when the peers have had superior financial performance, suggesting that firms are more likely to follow other firms' practices when they are perceived as generating value. Also, the propagation is stronger for the connections between the firms that come from past interactions with more influential board members (as measured by age and interconnectedness), suggesting that social pressure and the desire to conform to norms set by high-status actors can drive corporate behavior (values). Finally, ESG practices are more likely to propagate among direct competitors, where firms may use ESG as a differentiation strategy to enhance competitive advantage. On the contrary, we do not see this kind of propagation for firms down the supply chain. This is relevant because it rules out a merely mechanical effect resulting from the fact that in some cases the ESG score of a firm directly incorporates the actions of its suppliers (e.g., CO2 emissions).

Our second approach to examining the propagation of ESG practices through peer networks compares the responses of connected and unconnected firms to various ESG-related shocks affecting other firms but not themselves. For the environmental dimension (E), we analyze the impact of extreme weather events, such as major hurricanes, and significant environmental fines. For the social dimension (S), we consider high-profile scandals, such as sexual harassment cases, and extreme fines. Assuming that the timing of these events is uncorrelated with preexisting relationships among firms, comparing the ESG trajectories of firms connected to affected firms via director networks with those of unconnected firms provides further evidence for the causal nature of peer influence.

Consistent with our baseline panel data findings, we observe that firms connected through peer networks to shocked firms significantly increase their ESG ratings in the same dimension compared to unconnected firms. These results hold across different types of events and econometric specifications, further strengthening the causal interpretation. Together, our two complementary methodologies—panel data regressions and difference-in-differences analyses—demonstrate not only consistent directional effects but also comparable magnitudes of ESG responses.

This paper contributes to several strands of literature. In the ongoing Value vs. Values debate (Starks, 2023), we provide evidence that ESG-related decisions are influenced not only by financial considerations but also by the choices of peers, regardless of the specific context a firm faces. Our findings align with the values perspective, as they suggest that individuals embedded in networks tend to emulate those who share similar principles. At the same time, we also support the value perspective, demonstrating that ESG propagation is influenced by peers' performance and strategic considerations, highlighting the interplay between ethical principles and financial incentives.

Several papers have documented that firms socially connected through interactions among non-board members—such as workers, clients, suppliers, financiers, and analysts—exhibit common behavior.<sup>2</sup> We expand on this literature by examining connections through the board of directors, a particularly influential body in decision-making. Crucially, we can identify with certainty directors who have shared meaningful interactions in the same professional context.

Other authors have found evidence of commonality of other firms' behaviors at the local level (Kedia et al., 2015; Rind et al., 2022), through board interlocks (Chiu et al., 2013), or via industrial links (Grieser et al., 2022b). Limited evidence is available on ESG matters and each of its dimensions separately, particularly regarding the role of peers. Jiraporn et al., 2014, Husted et al., 2016, and Li and Wang, 2022 show that the corporate social responsibility engagement of neighboring firms impacts a firm's decisions on the same matter, while Liu and Wu, 2016 and Cao et al., 2019 show a similar result when looking at industry peers (competitors), and Dai et al., 2021a and Schiller, 2018 when focusing on customer/supplier relationships. Chen et al., 2020 also find these effects when defining peers based on common institutional ownership. We contribute to this literature by introducing a novel dimension of firms' linkages—the peer network, and showing that it significantly contributes to the diffusion of ESG actions, even after controlling for the type of linkages considered in the literature. Braun et al., 2022 provides evidence of this in the context of corporate misconduct. Our methodology based on exogenous events lends further support for a causal interpretation of the results in that literature.

The literature has identified several determinants of ESG practice adoption, both internal such as board and firm characteristics (Ferrell et al., 2016)—and external, including the regulatory environment (Dyck et al., 2019), stakeholder pressure (Dai et al., 2021b, Hartzmark and Sussman, 2019), competitive forces (Gantchev et al., 2024), and cultural and social norms (Cronqvist and Yu, 2017, Liang and Renneboog, 2017). Our research adds to this understanding by demonstrating that these forces can influence other firms indirectly through

<sup>&</sup>lt;sup>2</sup>See Leary and Roberts, 2014, Bustamante and Frésard, 2021, Cookson et al., 2022, Dimmock et al., 2018, Kuchler et al., 2022, and Gomes et al., 2023.

peer network connections, even when these firms do not face these pressures directly.

Methodologically, our use of both panel data regressions and difference-in-differences strategies contributes to the empirical literature by providing evidence of causal relationships in corporate finance research. By demonstrating consistent results across different methodologies, we strengthen the case for the influence of board network connections on firms' ESG practices.

Finally, we contribute to policy by suggesting that targeting and influencing key directors or firms—based on their directors' observable characteristics—can be an effective tool for ESG adoption.

This paper is organized as follows: Section 2 explains how we measure a firm's exposure to the ESG action of its peers across several networks and introduces our measure of professional board exposure. Section 3 describes the various data sources used to construct our network exposure measures and capture ESG actions. Section 4 presents the results of our empirical analysis, including our baseline regressions, instrumental variables, robustness analysis, and mechanisms. Section 5 reports the outcome of our differences-in-differences estimation of the effect of shocks to E and S. Section 6 concludes.

### 2 Measuring Network ESG Exposure

Firms are interconnected in various ways that can facilitate the spread of ESG practices. Consistent with the literature, we first examine connections through interlocking boards (Chiu et al., 2013) and geographic and industrial proximity (Grieser et al., 2022a, 2022b; Parsons et al., 2018).

For interlocking boards, firms *i* and *j* are considered connected at time *t* if they share at least one director, with the connection intensity  $w_{ijt}^{Inter}$  measured by the number of shared directors. Geographic proximity is defined by headquarters located in the same metropolitan

statistical area (MSA). Industrial proximity is based on firms sharing the same TRBC industry group code. In these two cases, connection intensity is either zero or one.

Beyond these traditional connections, we propose a novel measure of board connections based on shared professional experience. Two firms are considered connected at time *t* if their current board members have previously served together on any board—whether for one of the two firms or a third company. To measure connection intensity, we count the number of such shared board members, excluding direct interlocks, and scale each connection by the total years of shared professional experience. This measure thus captures the cumulative years of shared board service between members of the two firms.

Formally, our intensity of board professional connection between firms *i* and *j* in year *t*,  $w_{ijt}^{Brd}$ , corresponds to

$$w_{ijt}^{Brd} = \sum_{(p,q)\in i(t)\times j(t)} \mathbb{1}(p \text{ knows } q) \times \Delta_{pqt},$$
(1)

where i(t) and j(t) denote the set of non-interlocked board members from firm i and j in year t, respectively,  $\mathbb{1}$  is an indicator function that takes the value of 1 if director p from firm i has served as a board member with director q from firm j before year t, and  $\Delta_{pqt}$  is the number of years that directors p and q overlapped until year t (inclusive).

Figure 1 depicts how  $w_{ijt}^{Brd}$  works. In year t, two recently formed firms, A and B, have boards composed of directors  $A_i$  (i = 1, 2) and  $B_j$  (j = 1, 2, 3). At this point,  $w_{ijt}^{Brd}$  equals zero since no board members shared a common history before the year t. Then, at t + 1, board member  $B_2$  moves from firm B to A, making  $w_{ij,t+1}^{Brd}$  equal to two since she served as a director with board members  $B_1$  and  $B_3$  for one year. Finally, in year t + 2,  $w_{ij,t+2}^{Brd}$  remains equal to two given that no changes in board composition occurred. Since  $B_2$  shared the board with  $B_1$  and  $B_3$  for only one year,  $\Delta_{pqt}$  remains equal to one at t + 1 and t + 2.

Using our bilateral connection measures, we construct summary metrics to capture a firm's

exposure to its peers' ESG practices across four dimensions: board professional experiences, board interlocks, geographic proximity, and industry. For each dimension, the exposure is measured as the weighted average of the peers' past ESG scores.

$$Exp_{i,t}^{p}(ESG) = \sum_{j} s_{i,j,t}^{p} \times \overline{ESG}_{j,t-1},$$
(2)

where

$$s_{i,j,t}^{p} = \frac{w_{ijt}^{p}}{\sum_{j} w_{ijt}^{p}}, \quad p \in \{Inter, Brd, Loc, Ind\},$$
(3)

$$\overline{ESG}_{j,t-1} = \frac{ESG_{j,t-1} + ESG_{j,t-2} + ESG_{j,t-3}}{3}.$$
 (4)

We follow the same approach for each component of the overall ESG score: environmental (E), social (S), and governance (G). Using lagged peer ESG scores mitigates the reflection problem arising from the simultaneous influence between peers' and the focal firm's behaviors, complicating causal interpretation. Incorporating a three-year moving average reflects the gradual nature of ESG adoption, recognizing that such practices typically take time to implement. This temporal smoothing also reduces noise in annual ESG scores, providing a more stable and representative measure of peers' ESG commitment. We compute the weights  $s_{i,j,t}^p$  by including all firms, regardless of whether they have an ESG score. This approach prevents overemphasizing rated firms in the weighting. <sup>3</sup>

<sup>&</sup>lt;sup>3</sup>This is equivalent to imputing a score of zero to unrated firms. Alternatively, one could impute them the average score of the firm's industry, of similar firms, or its initial score once it becomes rated.

# **3** Data and Descriptive Statistics

#### 3.1 Data sources

This paper uses data from three main sources. First, we retrieve historical ESG scores and financial characteristics for U.S. companies from LSEG Eikon. Second, we construct board features and firm-level social networks using individual-level BoardEx network files. Third, we identify firms' locations using tools from the U.S. Census Bureau, including the U.S. Census Bureau Geocoder and Core-Based Statistical Area (CBSA) layers.

For the difference-in-differences estimations, we draw on three additional data sources. First, we use Violation Tracker data from Good Jobs First to track top penalties related to environmental and social offenses. Second, we identify natural disasters linked to climate change using the Emergency Events Database (EM-DAT) and georeference them with the Geocoded Disasters (GDIS) Dataset. Lastly, we include data from Borelli-Kjaer et al., 2021 to pinpoint corporate sexual harassment scandals in the U.S.

### 3.2 Data consolidation

Our working dataset combines information from the sources described earlier. The merging process follows these steps:

First, we begin with all US-domiciled firms with an LSEG ESG rating, yielding 25,224 firmyear observations from 2005 to 2022, covering 3,099 unique firms.<sup>4</sup>

Second, we retain only firms for which we retrieve key financial controls from Eikon, including Analyst Coverage, B/M Ratio, Total Assets, Leverage, ROA, Stock Return, and Tobin's Q. This step narrows the sample to 2,542 firms, corresponding to 20,517 firm-year observations.

<sup>&</sup>lt;sup>4</sup>We identify firms using the six-character CUSIP code (CUSIP-6).

Third, we process director-level data from BoardEx to compute six board features at the firm-year level: board achievements, age, diversity, graduate education, independence, size, and interlocking. We merge these features with our dataset, resulting in 19,748 firm-year observations for 2,416 unique firms.

Fourth, we use the U.S. Census Bureau Geocoder to convert firms' headquarters addresses into geographic coordinates, enabling us to identify their Metropolitan Statistical Area (MSA). We use the 2017 Core-Based Statistical Area (CBSA) layer from the U.S. Census Bureau's TIGER system.<sup>5</sup> This step yields 15,372 firm-year observations for 1,594 unique firms.

Finally, we compute various ESG exposure measures based on different network connections, as detailed in Section 2.

### 3.3 Descriptive statistics

Table 2 provides time-series descriptive statistics for the overall ESG score and its three pillars (Environmental, Social, and Governance) in our working sample. The average ESG score is 40.767 (standard deviation of 19.428), with pillar averages of 26.849 (E), 42.896 (S), and 49.265 (G). Variability, in terms of standard deviation, is highest in the Environmental pillar (27.497) and lowest in the Social pillar (21.174), reflecting firms' tendency to score higher and more consistently on Governance and Social dimensions. Median scores further emphasize this pattern: 18.947 (E), 39.602 (S), and 50.003 (G). Notably, 21.2% of US firms have an Environmental pillar score of zero due to limited public disclosures, as LSEG assigns a default value of zero in the absence of relevant data.<sup>6</sup>

Over time, ESG scores have trended upward, while dispersion has remained stable, except for the Environmental pillar, whose standard deviation increased from 6.364 in 2005 to 19.659

<sup>&</sup>lt;sup>5</sup>TIGER stands for "Topologically Integrated Geographic Encoding and Referencing," the U.S. Census Bureau's geographic spatial data system.

<sup>&</sup>lt;sup>6</sup>As of September 2024, 683 out of 3,325 U.S. firms have zero scores in all Environmental subcategories, including Emissions, Environmental Innovation, and Resource Use.

in 2022. Similarly, the number of firms with ESG ratings in LSEG grew from about 300 in 2005 to over 1,300 in 2022. In the Appendix, we compare firms with existing ESG scores to incoming firms, finding that the latter typically have lower scores.

Table 1 describes the network of board professional connections for 2020. Panel A shows a network of approximately 2,500 firms linked by 200,000 peer-director relationships, yielding a sparse density of 0.06. Panel B highlights significant firm-level heterogeneity: some firms are isolated, while others exhibit high centrality. The alpha measure, representing the average proportion of a firm's connections contributed by its neighbors, ranges from 0% to over 33.3%, with an average of 6.4%.

Panel A of Table 3 provides summary statistics for our main network exposure measures, firm fundamentals, and board characteristics. Panel B compares these statistics for firms with below- and above-median ESG scores. Firms with higher ESG scores tend to have greater exposure to firms with high ESG ratings across the four networks (professional connections, board interlocks, location, and industry). They are also larger and exhibit more advanced board features, including higher achievements, greater female participation, better educational attainment, increased independence, and more interlocking directorates. These correlations suggest that spillover mechanisms may play a role in disseminating ESG practices. These findings also highlight the need to control for firm characteristics in our econometric framework, whether parametrically or nonparametrically.

# 4 Panel Regression Analysis

We present our findings in three steps. First, we detail the baseline results. Second, we investigate the mechanisms underlying these results, focusing on peer learning, social pressure, and strategic considerations. Finally, we use IV estimates to demonstrate that the observed relationships are likely causal.

### 4.1 Baseline specification

We analyze ESG spillover effects using the following baseline specification:

$$y_{it} = \alpha_i + \alpha_t + \beta^{Brd} \underbrace{Exp_{it}^{Brd}(y)}_{\text{Peer Exposure}} + \beta^{Int} \underbrace{Exp_{it}^{Int}(y)}_{\text{Interlock Exposure}} + \beta^{Loc} \underbrace{Exp_{it}^{Loc}(y)}_{\text{Local Exposure}} + \beta^{Ind} \underbrace{Exp_{it}^{Ind}(y)}_{\text{Industry Exposure}}$$
(5)  
+  $\gamma \mathbf{Board}_{it} + \delta \mathbf{Firm}_{i,t-1} + \varepsilon_{it}$ 

where the dependent variable  $y_{it}$  represents the ESG score of firm *i* in year *t*, including the overall ESG score and its E, S, and G pillars. Our main independent variable of interest,  $Exp_{it}^{Brd}(y)$ , measures ESG exposure through professional board networks. The variables  $Exp_{it}^{Int}(y)$ ,  $Exp_{it}^{Loc}(y)$ , and  $Exp_{it}^{Ind}(y)$  capture ESG exposures through interlocking boards, geographic proximity, and industry, respectively.

The vector **Board**<sub>*it*</sub> includes firm *i*'s board characteristics in year *t*, such as achievements, age, diversity, graduate education, independence, interlocking, and size. The vector  $\mathbf{Firm}_{i,t-1}$  includes financial characteristics from year t-1, including analyst coverage, book-to-market ratio, size, leverage, ROA, stock annual return, and Tobin's Q. Firm and year fixed effects ( $\alpha_i$  and  $\alpha_t$ ) control for unobserved heterogeneity across these dimensions.

We cluster standard errors at the firm level to account for within-firm serial correlation. To facilitate interpretation, we standardize the four exposure measures so that each coefficient represents the impact of a one standard deviation change in the corresponding exposure measure on a firm's ESG score.<sup>7</sup>

Our panel regression approach relies on within-firm, time-varying variation for identification. By including firm and time fixed effects, we address potential biases stemming from unobservable firm characteristics that may influence both exposures and ESG indices, as long as

<sup>&</sup>lt;sup>7</sup>See the Appendix for detailed variable definitions.

these characteristics remain relatively stable over time. To further mitigate concerns, we control for the key time-varying factors identified in the literature, including a comprehensive set of firm-level financial and board attributes. This detailed control framework enhances the robustness of our results by accounting for potential changes in firm characteristics over time.

Table 4 presents the results of estimating equation 5 for the overall ESG score (Panel A) and its three components (Panels B to D). Columns (1) to (4) in each panel show specifications with each exposure measure included separately, while columns (5) to (7) progressively incorporate all four exposure measures. Columns (8) and (9) add financial and board-level controls, respectively.

The coefficient for board exposure is positive and statistically significant across all specifications for the overall ESG score (Panel A) as well as for the environmental (Panel B) and social (Panel C) dimensions. For the governance score (Panel D), the board exposure coefficient is positive but not statistically significant, with a magnitude similar to that observed for other ESG scores. These results support the notion that firms more closely connected through board linkages to higher ESG-scoring firms also tend to have higher ESG scores.

The pillar-specific influence of ESG practices—where one ESG pillar affects the same pillar in connected firms, rather than aggregate ESG influencing aggregate ESG—is significant for two reasons. First, it shows that ESG transmission is targeted and specific, not a generic process. Firms appear to prioritize adopting specific ESG components based on peer behaviors rather than broadly emulating overall ESG performance. Second, it reduces concerns that our findings merely reflect broader characteristics correlated with aggregate ESG scores. By demonstrating that specific pillars drive similar pillars in connected firms, we provide stronger evidence that ESG diffusion operates through targeted, substantive practices within each dimension.

In each panel, the coefficient magnitude is only slightly larger when each exposure measure is

considered in isolation compared to when all measures are included jointly (compare column (1) to column (7)). This small change suggests that each dimension has a distinct impact and that the effect of peer exposure does not merely reflect similarities among firms within the same industry, locality, or interlocked networks that attract directors with similar past experiences.

The coefficient magnitude further decreases when firm- and board-level time-varying controls are added in columns (8) and (9), underscoring the importance of controlling for these factors. However, the changes in coefficient size across specifications remain relatively modest, averaging around 25%.

The coefficients for interlock and industry exposures are positive, indicating that firms connected through interlocks or operating in industries with higher ESG-scoring peers tend to have higher ESG scores themselves. Similarly, geographic proximity to firms with higher ESG levels is positively associated with a firm's own ESG score. These findings align with existing literature, which highlights these connections as key factors in explaining commonalities in firm behavior and the adoption of ESG practices.

The influence of shared director experiences on ESG scores is notable but generally weaker than that of direct interlocking directorates, except for social performance. This indicates that while ESG practices diffuse through directors' shared experiences across firms, direct board interlocks exert a stronger effect. In the full specifications with all control variables (column (9) of each panel), a one-standard-deviation increase in Peer ESG, E, S, and G exposures corresponds to increases of 0.46, 0.57, 0.62, and 0.31 points in ESG, E, S, and G scores, respectively. The corresponding figures for exposures through interlocks are 0.52, 0.9, 0.53, and 0.4, respectively.

Geographic proximity to firms with higher ESG exposure is positively associated with a firm's ESG score, although this effect is not statistically significant. By contrast, industry exposure has the strongest impact: a one-standard-deviation increase in sector-level ESG exposure

corresponds to a 3.8 points increase in a firm's ESG score (20% of the standard-deviation of the variable).

To assess the economic significance of our results, we conduct two counterfactual analyses focusing on board exposure. First, we examine the first-order and total effects, including cascade effects, of a 1 standard deviation increase in ESG scores among currently connected peers. Second, we analyze the total effects if this ESG increase were limited to top central firms (those at the 75th percentile of the degree centrality distribution) and the resulting cascade effects on the broader peer network

A 1 standard deviation increase in peers' ESG scores is associated with a 3.5% standard deviation increase in the focal firm's ESG score. For the E and S pillars, this increase in peers' scores corresponds to 4.7% and 4.5% standard deviation increases in the focal firm's E and S scores, respectively. When accounting for second-order effects (network feedback), the impact rises to 14%, 19%, and 19% standard deviation increases for the ESG, E, and S scores, respectively.

If the 1 standard deviation increase occurs only among top central firms, the total impact on firms across the network averages 12.7%, 18.5%, and 19.4% standard deviation increases in ESG, E, and S scores, respectively.

The effect sizes we observe align with those reported in the literature. For instance, Dai et al., 2021a find that a one standard deviation increase in a customer's corporate social responsibility (CSR) score leads to a 17.5% standard deviation increase in the firm's CSR score. Similarly, Dyck et al., 2019 show that a one standard deviation increase in institutional ownership raises a firm's environmental performance by 6.7% of a standard deviation, while Chen et al., 2020 report that a comparable increase in shareholder monitoring intensity results in a 17% standard deviation higher CSR score. Finally, Husted et al., 2016 find that a one standard deviation increase in local CSR density among firms in the same area boosts a firm's CSR score by 7% of a standard deviation.

### 4.2 Instrumental variable approach

To address potential endogeneity concerns and bolster the causal interpretation of our findings, we use a shift-share instrument based on industry-level ESG trends. FollowingBorusyak et al., 2022 and Borusyak et al., 2024, this approach assumes that industry-wide dynamics impact a firm's ESG performance independently of firm-specific or local factors. By instrumenting a firm's ESG score with the industry ESG average and incorporating it into our exposure measures (except for industry exposure), we isolate variation driven by broader industry trends, effectively controlling for idiosyncratic firm-level shocks.

Specifically, we construct our instrument as  $z_{it}^p = \sum_j s_{ijt}^p \overline{ESG}_{jt}^{Ind(j)}$ , where  $s_{ijt}^p$  are the weights associated with the network  $p = \{Brd, Int, Loc\}$  and  $\overline{ESG}_{jt}^{Ind(j)}$  represents the average ESG score of the industry in which firm j operates.

Table 5 presents the results of the instrumental variable approach, which align with those from the baseline specification. The coefficients for *ESG*, *E*, and *S* remain positive and statistically significant across both peer effects and interlock specifications. These results indicate that our panel specification is robust to potential biases, reinforcing the causal interpretation of our main findings.

### 4.3 Mechanisms

Our analysis reveals a positive correlation between a firm's ESG ratings and those of its peerconnected firms. To better understand this relationship, we examine three mechanisms that could drive the spread of ESG practices through these networks. These mechanisms are tied to the motivations for firms to engage in ESG practices. As outlined by Starks, 2023, such engagement can stem from two primary drivers: the pursuit of *value* (enhancing financial performance) or adherence to *values* (aligning with ethical standards or social norms). The mechanisms explored in this section—peer learning, social pressure, and strategic considerations—are closely linked to these motivations.

First, in terms of peer learning, directors may observe how ESG practices impact peer firms' performance and adopt similar practices when they perceive financial benefits. This aligns with the motivation to pursue *value*.

Second, under social influence, influential figures within director networks can establish norms around ESG practices, pressuring firms to conform. This mechanism reflects the pursuit of *values*, as firms may adopt ESG practices to align with ethical standards or social expectations within their network, even when direct financial benefits are uncertain.

Finally, the relationship between a firm's ESG index and that of its peers may be driven by strategic considerations. Among competitors, firms might adopt ESG practices as a differentiation strategy to gain a competitive advantage, aligning with the pursuit of *value*(Albuquerque et al., 2019). In vertical supplier-customer relationships, a firm's ESG performance is often influenced by upstream partners in the production chain. Consequently, changes in a firm's ESG score—whether motivated by *value* or *values*—may prompt related firms to adjust their ESG practices as well.

#### 4.3.1 Learning about value

The effectiveness of ESG practices in enhancing firm value remains a topic of active debate. Some studies, such as Albuquerque et al., 2020 and Lins et al., 2017, argue that ESG engagement can reduce risk and enhance value, particularly during periods of market turbulence. However, other research, including Di Giuli and Kostovetsky, 2014 and Buchanan et al., 2018, highlights that the benefits of ESG practices are not universally clear and may even detract from firm value under certain conditions.

Given this uncertainty, it is reasonable to expect firms to look to the experiences of others when deciding whether to engage in ESG practices. The concept of peer learning is wellestablished, with evidence showing that firms often draw on the financial decisions of their peers. For instance, Leary and Roberts, 2014 demonstrate that a firm's capital structure decisions are influenced by the actions of similar firms within its industry or peer group. These peer effects are particularly strong in situations of information asymmetry, aligning with information-based theories of learning.

To examine this dimension, we analyze whether the positive link between a firm's ESG score and that of its board-connected peers is stronger when these peers exhibit greater financial performance. We differentiate peers with positive industry-adjusted financial performance over the past three years from those with non-positive performance, creating two sub-measures:  $Exp_{it}^{Brd-HP}(y)$  capturing exposure to ESG through high-performance peers, and and  $Exp_{it}^{Brd-LP}(y)$ , capturing exposure through low-performance peers. We use return on assets (ROA), return on equity (ROE), and the market-to-book ratio as performance metrics.

Table 6 shows that the ESG practices of financially high-performing peers significantly influence a firm's own ESG decisions. The coefficient for board exposure to high-performing peers is positive and significant, indicating a strong alignment with the practices of successful peers. In contrast, the relationship is weaker and less significant for board linkages to low-performing peers. This pattern suggests a learning mechanism, where firms interpret the ESG actions of successful peers as indicative of value creation, driving their own ESG strategies. This effect is consistent across the overall ESG score and its environmental and social components, supporting the 'learning about value' hypothesis.

Interestingly, the opposite result emerges for the governance component, particularly when considering ROA and ROE. Firms may view strong governance practices as potential constraints on managerial discretion, aligning instead with less stringent governance practices of low-performing peers to avoid such limitations. Alternatively, firms might intentionally adopt governance practices that differ from high-performing peers to attract a distinct investor base or signal a unique approach to value creation.

#### 4.3.2 Social influence and values

High-status individuals within corporate networks play a critical role in shaping organizational behavior by creating and enforcing social norms. Prominent directors and business leaders are often perceived as possessing superior expertise and decision-making abilities, prompting others in their network to follow their lead (Lord et al., 1984). This dynamic stems from cognitive biases linking status with competence and the influence of social proof, where behaviors endorsed by influential figures are viewed as more legitimate and socially acceptable(Cialdini, 2006, Cialdini, 2007). Consequently, high-status individuals wield significant power in establishing norms that others feel compelled to adopt, even when financial benefits are not immediately apparent.

This mechanism is particularly relevant to the adoption of Environmental, Social, and Governance (ESG) practices. Influential figures within director networks can foster a normative environment that pressures firms to align with the network's ethical standards and social expectations. DiMaggio and Powell, 1983 's concept of institutional isomorphism explains how firms, seeking legitimacy and social acceptance, adopt ESG practices to conform to these norms. Empirical evidence supports this perspective, showing that firms are more likely to engage in ESG initiatives when their leaders hold higher relative status within civil society (Ioannou and Serafeim, 2014). This social pressure serves as a powerful force, driving firms to align with broader societal values, even when the direct financial benefits are not immediately evident.

To test the hypothesis that social influence drives the transmission of ESG practices between firms, we examine whether a focal firm's ESG adoption is moderated by the characteristics of its connected firms. Specifically, we analyze the influence of the boards to which the firm is linked. We hypothesize that board exposure to ESG has a stronger effect when it originates from connections to firms with more influential boards. To evaluate this, we construct two sub-measures:  $Exp_{it}^{Brd-HI}(y)$  for board exposure to firms with influential boards and

 $Exp_{it}^{Brd-LI}(y)$  for connections to firms with less influential boards. The split is determined by the median of each influence indicator. We use two metrics to measure board influence: the average age of board members and their average number of connections to other firms (interconnectedness).

Table 7 presents the results. For overall ESG scores, the coefficient for peer exposure is positive and significant for professional connections to more influential boards, as measured by both board age and degree of interconnectedness. In contrast, the coefficient for professional connections to less influential boards, while positive, is smaller and statistically insignificant.

Examining the ESG components reveals heterogeneity. For the Environmental (E) score, board age has the strongest impact, suggesting that older, more established boards may prioritize environmental initiatives due to historical experience or a greater alignment with longterm sustainability concerns. In contrast, the degree of interconnectedness plays a more significant role for Social (S) and Governance (G) scores. Highly connected boards may promote the spread of social and governance practices by sharing insights and setting network-wide standards, as these dimensions often rely on shared norms and collective buy-in.

These findings support the hypothesis that social influence significantly contributes to the diffusion of ESG practices. The greater ESG adoption observed among firms connected to influential boards underscores the role of social pressure and the drive to conform to norms set by high-status actors. However, the observed heterogeneity across components indicates that no single mechanism explains how peer board characteristics influence the transmission of ESG practices across networks

#### 4.3.3 Strategic considerations

Firms increasingly view ESG performance as a way to differentiate themselves and attract customers, investors, and employees who prioritize sustainability and ethical practices, leading to increased market share, brand value, and financial performance (Porter and Kramer, 2006). Consequently, ESG-related actions by one firm can create a competitive advantage, prompting others in the same industry to follow suit. Liu and Wu, 2016 show that a firm's CSR behavior is positively influenced by the CSR levels of its competitors, while Cao et al., 2019 find that implementing a CSR proposal during shareholder meetings encourages peer firms to adopt similar practices. Albuquerque et al., 2019 further model CSR as an investment for product differentiation.

Vertical relationships also drive common ESG behavior.Dai et al., 2021a document that socially responsible corporate customers influence suppliers to adopt similar strategies. Similarly, Schiller, 2018 find that customer E&S policies positively affect supplier behavior, especially when customers have greater bargaining power or suppliers operate in regions with weaker ESG standards. Moreover, certain ESG dimensions, such as Scope 2 and 3 emissions, are directly linked to supplier performance.

This literature highlights the importance of examining how supply chain relationships affect ESG practice propagation. To investigate, we differentiate peer ESG exposures based on their relationship type. We construct four sub-measures of peer ESG exposure:  $Exp_{it}^{Brd-Up}(y)$  for upstream (supplier) relationships,  $Exp_{it}^{Brd-Down}(y)$  for downstream (customer) relationships,  $Exp_{it}^{Brd-H}(y)$  for industry competitors, and  $Exp_{it}^{Brd-UR}(y)$  for unrelated firms.

We identify upstream and downstream inter-industry relationships using input-output matrices (Make and Use) for the U.S. economy from the U.S. Bureau of Labor Statistics for 2020. Appendix **??** provides details on how we extract vertical inter-industry relationships from these matrices.

Table 8 presents the results of our analysis, highlighting a nuanced relationship between ESG peer effects and the type of firm linkages. In column (1), the coefficient for horizontal board connections—firms operating within the same industry—is positive, significant, and the largest among the sub-measures. This suggests that ESG practices propagate most effectively among direct competitors, where firms may use ESG as a differentiation strategy to gain a

competitive edge. This aligns with the literature on ESG-driven competition, supporting the notion of a "race to the top", where firms improve ESG practices to outpace competitors, prompting rapid imitation through peer networks.

In contrast, coefficients for unrelated and upstream (supplier) linkages are not statistically significant, indicating that ESG behaviors are less likely to spread among non-competing firms or those loosely connected in the supply chain. Notably, the lack of significance for vertical relationships—particularly downstream linkages—suggests that mechanically integrated supplier-related ESG factors (e.g., CO2 emissions) in ESG scores do not drive the observed effects.

Examining the ESG components across columns, horizontal relationships consistently exhibit the largest coefficients, though the one for the Social (S) pillar is not statistically significant. Environmental (E) and Governance (G) practices often have industry-specific implications, such as emissions standards or board structures, making their propagation within the same industry more likely as competitors adopt similar practices to neutralize competitive advantages. By contrast, Social (S) practices address broader societal concerns, such as labor and community engagement, which transcend industry boundaries and are less influenced by horizontal relationships.

Overall, our findings support the three proposed mechanisms—peer learning, social influence, and strategic considerations—that drive the impact of peer ESG exposure on a firm's ESG decisions. However, the relevance of each mechanism varies depending on the type of linkage, ESG pillar, and specific firm characteristics.

In terms of economic magnitudes, the effect of peer ESG exposure is substantially amplified under certain conditions: it is 23.5% larger when connected firms have above-median ROA, 2.9 times greater when connected firms have highly interconnected boards, and 2.4 times greater when connected firms operate within the same industry (horizontal connections).

# 5 Difference in Differences

Our baseline specification, which employs a panel dataset with fixed effects and a comprehensive set of controls, effectively identifies peer effects and decomposes their influence across different dimensions under relatively mild assumptions. Moreover, our instrumental variable (IV) results reinforce the causal interpretation of these findings. To complement this analysis, we now use a staggered Difference-in-Differences (DID) approach to further isolate the causal impact of ESG spillover effects.

#### 5.0.1 Quasi-experimental design

This approach leverages differential responses to shocks affecting peer-connected firms within a staggered Difference-in-Differences (DID) framework. We analyze ESG outcomes of firms socially connected to impacted firms (the treatment group) compared to those unconnected and unaffected (the control group). The key identification assumption is that the timing of the shocks is uncorrelated with firms' pre-existing social connections.

We consider four types of shocks. The first two involve significant environmental and social offenses recorded in the Violation Tracker File. We focus on environment-related offenses and stakeholder-related offenses (e.g., competition violations, consumer protection breaches, and employment offenses) with penalties above the 95th percentile. Treated firms are those socially connected to the offending firm, while control firms are the remainder.

The other two shocks include extreme weather events and corporate sexual harassment scandalss, which we consider as shocks to *E* and *S*, respectively. For environmental shocks, we analyze catastrophic Climatological, Hydrological, and Meteorological disasters in the U.S. after 2005, identified using the Emergency Events Database (EM-DAT) and georeferenced to the MSA-year level with the Geocoded Disasters (GDIS) Dataset.<sup>8</sup> Treated firms are socially

<sup>&</sup>lt;sup>8</sup>The GDIS Dataset is a geocoded extension of the EM-DAT database, encompassing spatial geometry and GIS data for over 39,000 disaster locations worldwide from 1960 to 2018.

connected to those within affected MSAs, while the control group consists of unconnected firms outside affected MSAs. For social shocks, we focus on highly publicized corporate sexual harassment scandals documented by Borelli-Kjaer et al., 2021 in our sample after 2005. As with the other shocks, treated firms are socially connected to implicated firms, and control firms are unconnected.

Table 9 provides the distribution of these events over time and related summary statistics.

#### 5.0.2 Difference-in-differences estimations

We first analyze the impact of these events on treated firms using standard two-way fixedeffects (TWFE) regressions with parametric and non-parametric models:

$$y_{it} = \alpha_i + \alpha_t + \beta PostEvent_{it} + \varepsilon_{it}$$
(6)

$$y_{it} = \alpha_i + \alpha_t + \sum_{k=-7}^{-1} \mu_k + \sum_{k=1}^{7} \mu_k + \varepsilon_{it}$$
(7)

In Equation (6),  $PostEvent_{it}$  1 after the event for treated firms and 0 otherwise, with  $\beta$  capturing the change in ESG scores of treated firms compared to the yet-to-be-treated and never-treated firms, conditional on firm and year fixed effects. Equation (7) uses  $\mu_k$ , an indicator for year k relative to the event, with  $\mu_{-1} = 0$  for normalization. These indicator variables are always 0 for firms that are never treated. Standard errors are clustered at the firm level in both models.

Recognizing recent critiques of TWFE estimators when units are treated at different times (Athey and Imbens, 2022; Chaisemartin and D'Haultfoeuille, 2020; Goodman-Bacon, 2021; Sun and Abraham, 2021), we also estimate the average treatment effect on the treated (ATT) using the Callaway-Sant'Anna (CS) estimator Callaway and Sant'Anna, 2021, designed to address these limitations.

Table 10 summarizes the results. Columns 1–4 show the parametric TWFE results, columns 5–8 report non-parametric TWFE estimates, and columns 9–12 present CS estimator results. Across models, treated firms experience significant increases in ESG scores following peer firms' extreme E- or S-related penalties. The non-parametric TWFE and CS results further indicate that the effects materialize post-event, with coefficients positive and statistically significant starting the year after the shock. Pre-event coefficients are mostly insignificant, supporting the parallel trends assumption, as confirmed visually in Figures 2 and 3.

These exercises are encouraging for several reasons. First, they provide strong support for the causal interpretation of our findings. Using peer connections at the board level as treatment assignment consistently yields positive and significant effects across different types of shocks. Responses vary by dimension—for example, E-related shocks prompt different adjustments than S-related ones, reflecting distinct firm capabilities—yet the overall pattern of ESG spillovers remains consistent. Second, the responses are specific to the nature of the shock. Shocks targeting E trigger adjustments in E-related practices among connected firms without significant spillovers to unrelated areas such as S or G. This precision highlights the targeted nature of ESG spillovers driven by peer influence.

The parametric model estimates indicate that top E-related events and extreme weather shocks increase treated firms' E scores by approximately 3.748 and 2.744 points, respectively. Similarly, top S-related events and sexual harassment scandals increase treated firms' S scores by 2.566 and 1.785 points, respectively. The CS model suggests even larger effects, with extreme events leading to increases of around 10 points in the E score. Responses to S-related shocks are also significant, though smaller for sexual harassment scandals. These magnitudes must be interpreted with caution, however, since they capture the response to extreme events and not the average relationship reported in our panel regression approach.

The effects appear highly persistent. Treatment effects grow until around year five, stabilize, and do not decline thereafter. This pattern suggests enduring changes in ESG practices prompted by extreme events, reinforcing the durability of these peer-driven ESG spillovers.

# 6 Conclusions

Our research examines how peer networks, particularly through the shared experiences of board members, shape the adoption and spread of ESG (Environmental, Social, and Governance) practices. By introducing a novel measure, Peer ESG Exposure, which tracks board member connections to firms with strong ESG ratings, we demonstrate that firms are more likely to engage in ESG activities when connected to peers with higher ESG scores. These peer effects are distinct from traditional forms of influence, such as board interlocks, geographic proximity, or industry relationships, highlighting the unique role that social and professional networks play in driving corporate ESG behavior. To ensure the robustness of our findings, we address potential endogeneity concerns through several strategies that support a causal interpretation of the documented effects.

Our findings reveal several important insights. First, firms with board linkages to peers with high ESG scores and superior financial performance or influential boards tend to adopt stronger ESG practices. This suggests that, in making ESG decisions, firms are influenced not only by financial outcomes (the value-driven view) but also by social pressures and a desire to conform to norms established by high-status actors (the values-driven view). Second, ESG practices are more likely to spread through board connections with direct competitors, indicating that firms may adopt ESG initiatives as a competitive differentiation strategy in their markets. This competitive dynamic fosters a "race to the top," where firms improve their ESG practices to outpace rivals, encouraging others to follow suit.

A key policy implication of our research is that targeting influential directors from successful firms can act as a powerful catalyst for broader ESG adoption. Regulators and policymakers could leverage the centrality of these individuals within social and professional networks to promote sustainable practices more effectively. By focusing on a few key firms that are central to these networks, they can trigger a ripple effect, inspiring peer firms to adopt similar ESG practices. This network-driven approach has the potential to significantly amplify the impact

of ESG policies, creating widespread change through the influence of a strategically targeted few.

# References

- Albuquerque, R., Koskinen, Y., Yang, S., & Zhang, C. (2020). Resiliency of Environmental and Social Stocks: An Analysis of the Exogenous COVID-19 Market Crash. *The Review of Corporate Finance Studies*, 9(3), 593–621.
- Albuquerque, R., Koskinen, Y., & Zhang, C. (2019). Corporate social responsibility and firm risk: Theory and empirical evidence. *Management Science*, *65*(10), 4451–4469.
- Athey, S., & Imbens, G. W. (2022). Design-based analysis in difference-in-differences settings with staggered adoption. *Journal of Econometrics*, 226, 62–79.
- Borelli-Kjaer, M., Moehl Schack, L., & Nielsson, U. (2021). #MeToo: Sexual harassment and company value. *Journal of Corporate Finance*, *67*, 101875.
- Borusyak, K., Hull, P., & Jaravel, X. (2022). Quasi-experimental shift-share research designs (D. Krueger, Ed.). *The Review of Economic Studies*, *89*(1), 181–213.
- Borusyak, K., Hull, P., & Jaravel, X. (2024). Design-based identification with formula instruments: A review. *The Econometrics Journal*.
- Braun, M., Truffa, S., & Valdivieso, E. (2022). Director networks and misconduct. *Working Paper*.
- Buchanan, B., Cao, C. X., & Chen, C. (2018). Corporate social responsibility, firm value, and influential institutional ownership. *Journal of Corporate Finance*, *52*, 73–95.
- Bustamante, M. C., & Frésard, L. (2021). Does firm investment respond to peers' investment? *Management Science*, 67(8), 4703–4724.
- Callaway, B., & Sant'Anna, P. H. (2021). Difference-in-differences with multiple time periods. *Journal of Econometrics*, 225(2), 200–230.
- Cao, J., Liang, H., & Zhan, X. (2019). Peer effects of corporate social responsibility. *Management Science*, 65(12), 5487–5503.
- Chaisemartin, C. D., & D'Haultfoeuille, X. (2020). Two-way fixed effects estimators with heterogeneous treatment effects. *American Economic Review*, 110, 2964–96.
- Chen, T., Dong, H., & Lin, C. (2020). Institutional shareholders and corporate social responsibility. *Journal of Financial Economics*, *135*(2), 483–504.
- Chiu, P.-C., Teoh, S. H., & Tian, F. (2013). Board interlocks and earnings management contagion. *The Accounting Review*, *88*(3), 915–944.
- Cialdini, R. B. (2006, December). *Influence: The psychology of persuasion* (Revised edition). Harper Business.
- Cialdini, R. B. (2007). Descriptive social norms as underappreciated sources of social control. *Psychometrika*, *72*(2), 263–268.
- Cookson, J. A., Engelberg, J. E., & Mullins, W. (2022). Echo chambers. *The Review of Financial Studies*, *36*(2), 450–500.
- Cronqvist, H., & Yu, F. (2017). Shaped by their daughters: Executives, female socialization, and corporate social responsibility. *Journal of Financial Economics*, *126*(3), 543–562.
- Dai, R., Liang, H., & Ng, L. (2021a). Socially responsible corporate customers. *Journal of Financial Economics*, 142(2), 598–626.
- Dai, R., Liang, H., & Ng, L. (2021b). Socially responsible corporate customers. *Journal of Financial Economics*, 142(2), 598–626.
- Di Giuli, A., & Kostovetsky, L. (2014). Are red or blue companies more likely to go green? politics and corporate social responsibility. *Journal of Financial Economics*, 111(1), 158–180.

- DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. *American Sociological Review*, 48(2), 147.
- Dimmock, S. G., Gerken, W. C., & Graham, N. P. (2018). Is fraud contagious? coworker influence on misconduct by financial advisors. *The Journal of Finance*, *73*(3), 1417–1450.
- Dyck, A., Lins, K. V., Roth, L., & Wagner, H. F. (2019). Do institutional investors drive corporate social responsibility? international evidence. *Journal of Financial Economics*, 131(3), 693–714.
- Ferrell, A., Liang, H., & Renneboog, L. (2016). Socially responsible firms. *Journal of Financial Economics*, *122*(3), 585–606.
- Foucault, T., & Fresard, L. (2014). Learning from peers' stock prices and corporate investment. *Journal of Financial Economics*, 111(3), 554–577.
- Gantchev, N., Giannetti, M., & Li, R. (2024). Sustainability or performance? ratings and fund managers' incentives. *Journal of Financial Economics*, *155*, 103831.
- Gillan, S. L., Koch, A., & Starks, L. T. (2021). Firms and social responsibility: A review of esg and CSR research in corporate finance. *Journal of Corporate Finance*, *66*, 101889.
- Gomes, A., Gopalan, R., Leary, M. T., & Marcet, F. (2023). Analyst coverage networks and corporate financial policies. *Management Science*.
- Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. *Journal of Econometrics*, 225, 254–277.
- Grieser, W., Hadlock, C., LeSage, J., & Zekhnini, M. (2022a). Network effects in corporate financial policies. *Journal of Financial Economics*, 144(1), 247–272.
- Grieser, W., Maturana, G., Spyridopoulos, I., & Truffa, S. (2022b). Agglomeration, knowledge spillovers, and corporate investment. *Journal of Corporate Finance*, *77*, 102289.
- Hartzmark, S. M., & Sussman, A. B. (2019). Do investors value sustainability? a natural experiment examining ranking and fund flows. *The Journal of Finance*, *74*(6), 2789–2837.
- Hong, H., Kubik, J. D., & Stein, J. C. (2004). Social interaction and stock-market participation. *The Journal of Finance*, *59*(1), 137–163.
- Husted, B. W., Jamali, D., & Saffar, W. (2016). Near and dear? the role of location in CSR engagement. *Strategic Management Journal*, *37*(10), 2050–2070.
- Ioannou, I., & Serafeim, G. (2014). The impact of corporate social responsibility on investment recommendations: Analysts' perceptions and shifting institutional logics: Csr and investment recommendations. *Strategic Management Journal*, *36*(7), 1053–1081.
- Jiraporn, P., Jiraporn, N., Boeprasert, A., & Chang, K. (2014). Does corporate social responsibility (CSR) improve credit ratings? evidence from geographic identification. *Financial Management*, 43(3), 505–531.
- Kedia, S., Koh, K., & Rajgopal, S. (2015). Evidence on contagion in earnings management. *The Accounting Review*, *90*(6), 2337–2373.
- Kuchler, T., Russel, D., & Stroebel, J. (2022). JUE insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by facebook. *Journal of Urban Economics*, *127*, 103314.
- Leary, M. T., & Roberts, M. R. (2014). Do peer firms affect corporate financial policy? *The Journal of Finance*, *69*(1), 139–178.
- Li, C., & Wang, X. (2022). Local peer effects of corporate social responsibility. *Journal of Corporate Finance*, 73, 102187.

- Liang, H., & Renneboog, L. (2017). On the foundations of corporate social responsibility. *The Journal of Finance*, *72*(2), 853–910.
- Lins, K. V., Servaes, H., & Tamayo, A. (2017). Social capital, trust, and firm performance: The value of corporate social responsibility during the financial crisis. *The Journal of Finance*, 72(4), 1785–1824.
- Liu, S., & Wu, D. (2016). Competing by conducting good deeds: The peer effect of corporate social responsibility. *Finance Research Letters*, *16*, 47–54.
- Lord, R. G., Foti, R. J., & De Vader, C. L. (1984). A test of leadership categorization theory: Internal structure, information processing, and leadership perceptions. *Organizational Behavior and Human Performance*, 34(3), 343–378.
- Parsons, C. A., Sulaeman, J., & Titman, S. (2018). The geography of financial misconduct. *The Journal of Finance*, *73*(5), 2087–2137.
- Porter, M., & Kramer, M. (2006). Strategy society: The link between competitive advantage and corporate social responsibility. *Harvard Business Review*, *84*(12), 78–92.
- Rind, A. A., Abbassi, W., Allaya, M., & Hammouda, A. (2022). Local peers and firm misconduct: The role of sustainability and competition. *Economic Modelling*, *116*, 106000.
- Schiller, C. M. (2018). Global supply-chain networks and corporate social responsibility. SSRN.
- Starks, L. T. (2023). Presidential address: Sustainable finance and ESG issues value versus values. *The Journal of Finance*, *78*(4), 1837–1872.
- Sun, L., & Abraham, S. (2021). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. *Journal of Econometrics*, 225, 175–199.

### Figure 1: Peers network formation



Table 1: Network statistics for 2020

| Panel A: General characteristics of th        | ne peers network         |
|-----------------------------------------------|--------------------------|
| Number of firms<br>Number of links<br>Density | 2,488<br>195,371<br>0.06 |
| Density                                       | 0.00                     |

Panel B: Firm-level centrality, clustering, and alpha summary statistics

| Measure               | Mean             | SD                | p5             | p50             | p95              |
|-----------------------|------------------|-------------------|----------------|-----------------|------------------|
| Degree<br>Eigenvector | 157.051<br>0.015 | 3915.871<br>0.024 | 3.000<br>0.001 | 60.000<br>0.010 | 217.000<br>0.043 |
| Alpha                 | 0.064            | 0.152             | 0.005          | 0.017           | 0.333            |

#### Table 2: ESG over time

|       | ESG    |        |        |        |        |        |        | Ε      |        |        | S      |        |        |        | G      |        |        |        |        |        |        |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|       | Ν      | Mean   | SD     | p25    | p50    | p75    | Mean   | SD     | p25    | p50    | p75    | Mean   | SD     | p25    | p50    | p75    | Mean   | SD     | p25    | p50    | p75    |
| 2005  | 377    | 34.137 | 16.930 | 21.483 | 30.462 | 43.925 | 18.410 | 22.914 | 0.000  | 6.364  | 27.209 | 35.862 | 20.002 | 20.608 | 31.585 | 48.684 | 47.560 | 21.608 | 29.432 | 47.210 | 65.386 |
| 2006  | 391    | 35.773 | 17.011 | 22.616 | 33.615 | 45.769 | 19.724 | 23.411 | 0.000  | 10.870 | 30.886 | 38.039 | 20.362 | 22.696 | 34.695 | 50.041 | 47.882 | 20.957 | 31.246 | 47.955 | 63.742 |
| 2007  | 428    | 40.023 | 17.966 | 25.877 | 38.248 | 51.731 | 27.899 | 26.415 | 0.571  | 21.960 | 47.575 | 43.538 | 19.745 | 28.529 | 41.024 | 57.072 | 47.303 | 21.771 | 30.578 | 46.042 | 64.655 |
| 2008  | 533    | 40.511 | 19.529 | 24.746 | 37.152 | 54.346 | 29.504 | 27.148 | 2.667  | 22.668 | 51.114 | 43.202 | 20.598 | 27.519 | 39.686 | 56.927 | 47.969 | 22.997 | 29.776 | 47.426 | 66.566 |
| 2009  | 598    | 40.711 | 20.574 | 24.915 | 36.557 | 55.575 | 30.393 | 28.227 | 2.634  | 21.883 | 53.613 | 42.792 | 21.228 | 27.295 | 37.901 | 58.500 | 48.440 | 23.766 | 28.671 | 48.381 | 68.023 |
| 2010  | 622    | 42.274 | 20.053 | 27.017 | 38.423 | 57.233 | 33.171 | 28.112 | 6.131  | 26.391 | 56.434 | 44.229 | 21.256 | 28.360 | 40.169 | 59.520 | 49.254 | 22.777 | 31.894 | 47.691 | 67.149 |
| 2011  | 645    | 43.518 | 20.231 | 27.104 | 40.812 | 58.671 | 34.908 | 28.231 | 9.119  | 30.552 | 58.724 | 45.566 | 21.320 | 29.418 | 42.167 | 60.808 | 49.526 | 22.731 | 31.647 | 50.440 | 68.492 |
| 2012  | 664    | 43.908 | 19.877 | 27.788 | 42.014 | 59.743 | 35.956 | 27.984 | 12.461 | 31.366 | 59.829 | 45.855 | 21.076 | 29.888 | 42.455 | 61.271 | 49.414 | 22.639 | 31.772 | 50.575 | 66.745 |
| 2013  | 672    | 44.143 | 19.871 | 28.916 | 42.643 | 59.732 | 35.898 | 27.859 | 11.610 | 32.407 | 60.288 | 46.268 | 21.281 | 30.273 | 42.707 | 62.694 | 49.592 | 22.765 | 31.285 | 50.198 | 68.163 |
| 2014  | 676    | 44.593 | 19.415 | 29.880 | 43.203 | 58.886 | 36.499 | 27.815 | 12.493 | 32.846 | 61.311 | 46.639 | 20.819 | 30.388 | 43.484 | 62.092 | 49.552 | 22.604 | 31.851 | 49.839 | 67.740 |
| 2015  | 1,057  | 40.850 | 19.294 | 26.070 | 38.047 | 53.613 | 29.427 | 27.212 | 3.555  | 20.077 | 49.790 | 42.429 | 20.683 | 26.468 | 39.137 | 57.357 | 49.792 | 22.391 | 30.913 | 50.804 | 67.853 |
| 2016  | 1,509  | 38.707 | 18.559 | 24.504 | 34.558 | 50.503 | 25.148 | 26.060 | 0.000  | 20.743 | 41.283 | 40.540 | 20.131 | 25.199 | 36.711 | 52.951 | 49.029 | 21.872 | 32.486 | 49.594 | 66.859 |
| 2017  | 1,959  | 37.510 | 18.718 | 23.667 | 33.431 | 49.048 | 23.039 | 25.381 | 0.000  | 16.983 | 36.167 | 39.300 | 20.847 | 23.948 | 35.664 | 51.824 | 48.685 | 22.112 | 31.438 | 49.203 | 66.383 |
| 2018  | 2,096  | 38.196 | 19.144 | 23.580 | 34.421 | 50.127 | 20.950 | 26.926 | 0.000  | 6.234  | 37.790 | 39.793 | 21.078 | 23.766 | 35.842 | 53.369 | 48.598 | 22.332 | 31.126 | 50.070 | 66.680 |
| 2019  | 2,253  | 39.864 | 19.092 | 24.832 | 36.620 | 52.859 | 23.671 | 27.412 | 0.000  | 10.968 | 42.900 | 41.692 | 21.215 | 25.167 | 38.149 | 56.153 | 49.005 | 22.042 | 32.092 | 49.669 | 66.332 |
| 2020  | 2,371  | 41.453 | 19.461 | 26.041 | 38.572 | 55.502 | 25.450 | 27.654 | 0.000  | 14.581 | 46.536 | 43.917 | 21.264 | 26.983 | 40.517 | 59.279 | 49.548 | 22.450 | 30.902 | 50.257 | 67.371 |
| 2021  | 2,463  | 42.894 | 19.697 | 26.959 | 40.167 | 58.147 | 27.562 | 27.852 | 1.411  | 18.950 | 49.335 | 45.635 | 21.382 | 28.617 | 43.147 | 61.565 | 50.119 | 22.757 | 32.166 | 51.188 | 68.719 |
| 2022  | 2,147  | 43.215 | 19.625 | 27.214 | 41.062 | 59.019 | 28.062 | 27.632 | 1.846  | 19.659 | 49.985 | 45.697 | 21.334 | 28.037 | 44.113 | 61.571 | 50.513 | 22.456 | 32.521 | 51.855 | 68.738 |
| Total | 21,461 | 40.767 | 19.428 | 25.483 | 37.501 | 54.640 | 26.849 | 27.497 | 0.000  | 18.947 | 47.462 | 42.896 | 21.174 | 26.360 | 39.602 | 57.779 | 49.265 | 22.398 | 31.469 | 50.003 | 67.245 |

Notes: This table presents time-series descriptive statistics for the main outcome variables of our working sample used in the paper: the ESG score and the scores for the Environmental (E), Social (S), and Governance (G) pillars.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                       | Mean                                                                                                                                                    | SD                                                                                                                                                                      | p25                                                                                                                                                               | p50                                                                                                                                                     | p75                                                                                                                                                                     |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Panel A: Full sample $(y = ESG)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $Exp^{Brd}(y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21,461                                                                                                                                                  | 25.851                                                                                                                                                  | 13.138                                                                                                                                                                  | 16.113                                                                                                                                                            | 25.866                                                                                                                                                  | 35.605                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $Exp^{Int}(y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21,461                                                                                                                                                  | 22.090                                                                                                                                                  | 19.247                                                                                                                                                                  | 0.000                                                                                                                                                             | 19.834                                                                                                                                                  | 35.952                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $Exp^{Loc}(y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21,461                                                                                                                                                  | 20.219                                                                                                                                                  | 12.147                                                                                                                                                                  | 9.508                                                                                                                                                             | 20.585                                                                                                                                                  | 29.715                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $Exp^{Ind}(y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21,461                                                                                                                                                  | 21.634                                                                                                                                                  | 11.416                                                                                                                                                                  | 11.292                                                                                                                                                            | 22.438                                                                                                                                                  | 30.738                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Analyst Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21,461                                                                                                                                                  | 1.989                                                                                                                                                   | 1.098                                                                                                                                                                   | 1.386                                                                                                                                                             | 2.197                                                                                                                                                   | 2.890                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B/M Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21,461                                                                                                                                                  | 0.494                                                                                                                                                   | 0.482                                                                                                                                                                   | 0.207                                                                                                                                                             | 0.401                                                                                                                                                   | 0.683                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Firm Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21,461                                                                                                                                                  | 21.941                                                                                                                                                  | 1.961                                                                                                                                                                   | 20.762                                                                                                                                                            | 21.981                                                                                                                                                  | 23.189                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Leverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21,461                                                                                                                                                  | 28.792                                                                                                                                                  | 28.886                                                                                                                                                                  | 5.582                                                                                                                                                             | 23.531                                                                                                                                                  | 42.161                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ROA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21,461                                                                                                                                                  | 0.059                                                                                                                                                   | 20.662                                                                                                                                                                  | 0.603                                                                                                                                                             | 3.154                                                                                                                                                   | 7.644                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Stock Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21,461                                                                                                                                                  | 16.689                                                                                                                                                  | 61.510                                                                                                                                                                  | -12.508                                                                                                                                                           | 9.151                                                                                                                                                   | 32.552                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tobin's Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21,461                                                                                                                                                  | 2.281                                                                                                                                                   | 2.184                                                                                                                                                                   | 1.127                                                                                                                                                             | 1.560                                                                                                                                                   | 2.499                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Board Achievements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21,461                                                                                                                                                  | 41.927                                                                                                                                                  | 23.418                                                                                                                                                                  | 25.000                                                                                                                                                            | 41.667                                                                                                                                                  | 58.333                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Board Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21,461                                                                                                                                                  | 63.186                                                                                                                                                  | 4.511                                                                                                                                                                   | 60.500                                                                                                                                                            | 63.200                                                                                                                                                  | 65.846                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Board Diversity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21,461                                                                                                                                                  | 17.032                                                                                                                                                  | 12.945                                                                                                                                                                  | 9.091                                                                                                                                                             | 16.667                                                                                                                                                  | 25.000                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Board Grad. Education                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21,461                                                                                                                                                  | 37.939                                                                                                                                                  | 21.560                                                                                                                                                                  | 22.222                                                                                                                                                            | 37.500                                                                                                                                                  | 50.000                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Board Independence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21,461                                                                                                                                                  | 81.878                                                                                                                                                  | 13.261                                                                                                                                                                  | 75.000                                                                                                                                                            | 85.714                                                                                                                                                  | 90.000                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Board Interlocking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21,461                                                                                                                                                  | 38.683                                                                                                                                                  | 26.144                                                                                                                                                                  | 16.667                                                                                                                                                            | 37.500                                                                                                                                                  | 57.143                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Board Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21,461                                                                                                                                                  | 8.147                                                                                                                                                   | 2.515                                                                                                                                                                   | 7.000                                                                                                                                                             | 8.000                                                                                                                                                   | 10.000                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Below n                                                                                                                                                 | nedian y-sco                                                                                                                                            | ore $(D(y) = 0)$                                                                                                                                                        | Above m                                                                                                                                                           | edian y-sc                                                                                                                                              | ore $(D(y) = 1)$                                                                                                                                                        | Di                                                                                                                                                                                         | ff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ν                                                                                                                                                       | Mean                                                                                                                                                    | SD                                                                                                                                                                      | N                                                                                                                                                                 | Mean                                                                                                                                                    | SD                                                                                                                                                                      | $\Delta$ Mean                                                                                                                                                                              | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                       | Mean                                                                                                                                                    | SD                                                                                                                                                                      | N                                                                                                                                                                 | Mean                                                                                                                                                    | SD                                                                                                                                                                      | $\Delta$ Mean                                                                                                                                                                              | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Panel B: Subsamples $(y = ESG)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                       | Mean                                                                                                                                                    | SD                                                                                                                                                                      | N                                                                                                                                                                 | Mean                                                                                                                                                    | SD                                                                                                                                                                      | Δ Mean                                                                                                                                                                                     | <i>p</i> -value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N<br>10,736                                                                                                                                             | Mean                                                                                                                                                    | SD<br>12.783                                                                                                                                                            | N<br>10,725                                                                                                                                                       | Mean 30.132                                                                                                                                             | SD<br>12.050                                                                                                                                                            | ∆ Mean<br>8.558                                                                                                                                                                            | <i>p</i> -value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{Int}(y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N<br>10,736<br>10,736                                                                                                                                   | Mean<br>21.574<br>14.757                                                                                                                                | SD<br>12.783<br>16.351                                                                                                                                                  | N<br>10,725<br>10,725                                                                                                                                             | Mean<br>30.132<br>29.431                                                                                                                                | SD<br>12.050<br>19.131                                                                                                                                                  | ∆ Mean<br>8.558<br>14.674                                                                                                                                                                  | <i>p</i> -value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Panel B: Subsamples ( $y = ESG$ )<br>$Exp^{Brd}(y)$<br>$Exp^{loc}(y)$<br>$Exp^{loc}(y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N<br>10,736<br>10,736<br>10,736                                                                                                                         | Mean<br>21.574<br>14.757<br>19.695                                                                                                                      | SD<br>12.783<br>16.351<br>12.169                                                                                                                                        | N<br>10,725<br>10,725<br>10,725                                                                                                                                   | Mean<br>30.132<br>29.431<br>20.744                                                                                                                      | SD<br>12.050<br>19.131<br>12.103                                                                                                                                        | Δ Mean<br>8.558<br>14.674<br>1.049                                                                                                                                                         | <i>p</i> -value<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{Int}(y)$<br>$Exp^{Loc}(y)$<br>$Exp^{Ind}(y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N<br>10,736<br>10,736<br>10,736<br>10,736                                                                                                               | Mean<br>21.574<br>14.757<br>19.695<br>20.677                                                                                                            | SD<br>12.783<br>16.351<br>12.169<br>11.214                                                                                                                              | N<br>10,725<br>10,725<br>10,725<br>10,725                                                                                                                         | Mean<br>30.132<br>29.431<br>20.744<br>22.592                                                                                                            | SD<br>12.050<br>19.131<br>12.103<br>11.536                                                                                                                              | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915                                                                                                                                                | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{lot}(y)$<br>$Exp^{loc}(y)$<br>$Exp^{Ind}(y)$<br>Analyst Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                                                                                                     | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609                                                                                                   | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063                                                                                                                     | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                                                                                                               | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.160                                                                                          | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997                                                                                                                     | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760                                                                                                                                       | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{Int}(y)$<br>$Exp^{Ind}(y)$<br>$Exp^{Ind}(y)$<br>Analyst Coverage<br>B/M Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                                                                                           | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>0.520<br>20.20                                                                                 | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.700                                                                                                   | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                                                                                                     | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.469<br>20.992                                                                                | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445                                                                                                            | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>-0.052                                                                                                                             | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{brd}(y)$<br>$Exp^{fint}(y)$<br>$Exp^{fint}(y)$<br>$Exp^{find}(y)$<br>Analyst Coverage<br>B/M Ratio<br>Firm Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                                                                                 | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>0.520<br>21.060<br>22.661                                                                      | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>1.788                                                                                          | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                                                                                           | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.469<br>22.822<br>20.920                                                                      | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716                                                                                                   | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>-0.052<br>1.762<br>2.272                                                                                                           | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{Int}(y)$<br>$Exp^{Ind}(y)$<br>$Exp^{Ind}(y)$<br>Analyst Coverage<br>B/M Ratio<br>Firm Size<br>Leverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                                                                                 | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>0.520<br>21.060<br>27.604                                                                      | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>32.724                                                                               | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                                                                                 | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.469<br>22.822<br>29.982                                                                      | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390                                                                                         | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>-0.052<br>1.762<br>2.379                                                                                                           | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fad}(y)$<br>Analyst Coverage<br>B/M Ratio<br>Firm Size<br>Leverage<br>ROA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                                                             | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>0.520<br>21.060<br>27.604<br>-3.918                                                            | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>26.670                                                                               | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                                                                       | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.469<br>22.822<br>29.982<br>4.040                                                             | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390<br>10.517                                                                               | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>-0.052<br>1.762<br>2.379<br>7.958                                                                                                  | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{brd}(y)$<br>$Exp^{loc}(y)$<br>$Exp^{loc}(y)$<br>$Exp^{loc}(y)$<br>$Exp^{loc}(y)$<br>$Exp^{loc}(y)$<br>$Exp^{loc}(y)$<br>Expression (y)<br>Expression (y)<br>Expressio                                                                                                                                                                                                                                               | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                                                             | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>0.520<br>21.060<br>27.604<br>-3.918<br>19.083                                                  | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>26.670<br>73.676                                                                     | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                                                             | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.469<br>22.822<br>29.982<br>4.040<br>14.292                                                   | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390<br>10.517<br>46.108                                                                     | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>-0.052<br>1.762<br>2.379<br>7.958<br>-4.791<br>-0.052                                                                              | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{frd}(y)$<br>$Exp^{frd}(y)$<br>$Exp^{frd}(y)$<br>Analyst Coverage<br>B/M Ratio<br>Firm Size<br>Leverage<br>ROA<br>Stock Return<br>Tobin's Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                                                   | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>0.520<br>21.060<br>27.604<br>-3.918<br>19.083<br>2.408                                         | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>26.670<br>73.676<br>2.512                                                            | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                                                             | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.469<br>22.822<br>29.982<br>4.040<br>14.292<br>2.155                                          | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390<br>10.517<br>46.108<br>1.788                                                            | Δ Mean           8.558           14.674           1.049           1.915           0.760           -0.052           1.762           2.379           7.958           -4.791           -0.253 | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{Int}(y)$<br>$Exp^{Int}(y)$<br>$Exp^{Ind}(y)$<br>Analyst Coverage<br>B/M Ratio<br>Firm Size<br>Leverage<br>ROA<br>Stock Return<br>Tobin's Q<br>Board Achievements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                                                   | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>0.520<br>21.060<br>27.604<br>-3.918<br>19.083<br>2.408<br>34.910                               | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>26.670<br>73.676<br>2.512<br>22.168                                                  | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                                                   | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.469<br>22.822<br>29.982<br>4.040<br>14.292<br>2.155<br>48.952                                | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390<br>10.517<br>46.108<br>1.788<br>22.512                                                  | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>-0.052<br>1.762<br>2.379<br>7.958<br>-4.791<br>-0.253<br>14.043                                                                    | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{brd}(y)$<br>$Exp^{fint}(y)$<br>$Exp^{fint}(y)$<br>$Exp^{find}(y)$<br>Analyst Coverage<br>B/M Ratio<br>Firm Size<br>Leverage<br>ROA<br>Stock Return<br>Tobin's Q<br>Board Achievements<br>Board Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                                         | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>0.520<br>21.060<br>27.604<br>-3.918<br>19.083<br>2.408<br>34.910<br>63.133                     | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>26.670<br>73.676<br>2.512<br>22.168<br>5.113                                         | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                                         | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.469<br>22.822<br>29.982<br>4.040<br>14.292<br>2.155<br>63.239                                | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390<br>10.517<br>46.108<br>1.788<br>22.512<br>3.815<br>3.815                                | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>-0.052<br>1.762<br>2.379<br>7.958<br>-4.791<br>-0.253<br>14.043<br>0.106                                                           | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{brd}(y)$<br>$Exp^{fint}(y)$<br>$Exp^{fint}(y)$<br>$Exp^{fint}(y)$<br>$Exp^{fint}(y)$<br>Analyst Coverage<br>B/M Ratio<br>Firm Size<br>Leverage<br>ROA<br>Stock Return<br>Tobin's Q<br>Board Achievements<br>Board Age<br>Board Diversity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736                               | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>21.060<br>27.604<br>-3.918<br>19.083<br>2.408<br>34.910<br>63.133<br>12.627                    | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>26.670<br>73.676<br>2.512<br>22.168<br>5.113<br>12.323<br>12.323                     | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                               | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>0.469<br>22.822<br>29.982<br>4.040<br>14.292<br>2.155<br>48.952<br>63.239<br>21.442            | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390<br>10.517<br>46.108<br>1.788<br>22.512<br>3.815<br>12.018                               | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>-0.052<br>1.762<br>2.379<br>7.958<br>-4.791<br>-0.253<br>14.043<br>0.106<br>8.815                                                  | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{frd}(y)$<br>$Exp^{frd}(y)$<br>$Exp^{frd}(y)$<br>Analyst Coverage<br>B/M Ratio<br>Firm Size<br>Leverage<br>ROA<br>Stock Return<br>Tobin's Q<br>Board Achievements<br>Board Age<br>Board Diversity<br>Board Grad. Education                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736           | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>27.604<br>-3.918<br>2.408<br>34.910<br>63.133<br>2.408<br>34.910<br>63.133<br>12.627<br>33.361 | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>26.670<br>73.676<br>2.512<br>22.168<br>5.113<br>12.323<br>22.002                     | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                     | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>22.822<br>29.982<br>4.040<br>22.155<br>48.952<br>63.239<br>21.442<br>42.522                    | SD<br>12.050<br>19.131<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390<br>10.517<br>46.108<br>1.788<br>22.512<br>3.815<br>12.018<br>20.091<br>20.091                     | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>-0.052<br>1.762<br>2.379<br>7.958<br>-4.791<br>-0.253<br>14.043<br>0.106<br>8.815<br>9.161                                         | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{Brd}(y)$<br>$Exp^{Int}(y)$<br>$Exp^{Ind}(y)$<br>$Exp^{Ind}(y)$<br>Analyst Coverage<br>B/M Ratio<br>Firm Size<br>Leverage<br>ROA<br>Stock Return<br>Tobin's Q<br>Board Achievements<br>Board Age<br>Board Achievements<br>Board Age<br>Board Diversity<br>Board Grad. Education<br>Board Independence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736 | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>0.520<br>21.060<br>27.604<br>19.083<br>2.408<br>34.910<br>63.133<br>12.627<br>33.361<br>78.279 | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>26.670<br>73.676<br>2.512<br>22.168<br>5.113<br>12.323<br>22.002<br>14.835<br>22.002 | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725 | Mean<br>30.132<br>29.431<br>20.744<br>22.569<br>0.469<br>22.822<br>29.982<br>4.040<br>14.292<br>2.155<br>63.239<br>21.442<br>522<br>83.481              | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390<br>10.517<br>46.108<br>1.788<br>22.512<br>3.815<br>12.018<br>22.091<br>10.278           | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>2.379<br>7.958<br>-4.791<br>-0.253<br>14.043<br>0.106<br>8.815<br>9.161<br>7.203                                                   | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Panel B: Subsamples $(y = ESG)$<br>$Exp^{brd}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y)$<br>$Exp^{fac}(y$ | N<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736<br>10,736           | Mean<br>21.574<br>14.757<br>19.695<br>20.677<br>1.609<br>21.060<br>27.604<br>3.918<br>19.083<br>2.408<br>34.910<br>63.133<br>12.627<br>33.361<br>33.361 | SD<br>12.783<br>16.351<br>12.169<br>11.214<br>1.063<br>0.515<br>1.788<br>32.724<br>26.670<br>73.676<br>2.512<br>22.168<br>5.113<br>12.323<br>22.002<br>14.835<br>26.721 | N<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725<br>10,725                     | Mean<br>30.132<br>29.431<br>20.744<br>22.592<br>2.369<br>22.822<br>29.982<br>4.040<br>14.292<br>2.155<br>48.952<br>21.442<br>42.523<br>85.481<br>44.695 | SD<br>12.050<br>19.131<br>12.103<br>11.536<br>0.997<br>0.445<br>1.716<br>24.390<br>10.517<br>46.108<br>1.788<br>22.512<br>3.815<br>12.018<br>20.091<br>10.278<br>24.099 | Δ Mean<br>8.558<br>14.674<br>1.049<br>1.915<br>0.760<br>0.052<br>1.762<br>2.379<br>-0.053<br>1.762<br>2.379<br>-0.253<br>14.043<br>0.106<br>8.815<br>9.161<br>7.203<br>12.018              | <i>p</i> -value<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000000 |

Table 3: Firm-level characteristics across firms' ESG tendency

Notes: Panel A shows descriptive statistics for the main firm-level characteristics of the entire working sample. Panel B provides descriptive statistics for two subsamples split according to the dummy variable D(y), which takes the value 1 if a firm's ESG score is above the median ESG score of the entire sample (and zero otherwise). The left-hand columns display summary statistics for firm-year observations with D(y) = 0, while the right-hand columns display summary statistics for firm-year observations with D(y) = 1. The column labeled 'Diff.' reports the estimated coefficients from regressing each variable on D(y). Robust standard errors are used to calculate *p*-values, which are reported in the final column.

| Table 4. Multivariate analysis | Table 4: | Multivariate | analysis |
|--------------------------------|----------|--------------|----------|
|--------------------------------|----------|--------------|----------|

|                         | (1)         | (2)        | (3)        | (4)                  | (5)           | (6)        | (7)                  | (8)            | (9)            |
|-------------------------|-------------|------------|------------|----------------------|---------------|------------|----------------------|----------------|----------------|
| Panel A: ESG s          | core        |            |            |                      |               |            |                      |                |                |
| $Exp^{Brd}(v)$          | 0.822***    |            |            |                      | 0.764***      | 0.761***   | 0.685***             | 0.587***       | 0.455**        |
| 2.49 (5)                | (0.196)     |            |            |                      | (0.194)       | (0.194)    | (0.192)              | (0.188)        | (0.186)        |
| $Fxn^{Int}(y)$          | (0.170)     | 0.826***   |            |                      | 0 794***      | 0 792***   | 0 761***             | 0.683***       | 0 524***       |
| Exp (J)                 |             | (0.160)    |            |                      | (0.168)       | (0.168)    | (0.166)              | (0.161)        | (0.527)        |
| Exercise                |             | (0.109)    | 0.270      |                      | (0.100)       | 0.205      | 0.140                | 0.101)         | 0.162          |
| Exp(y)                  |             |            | (0.5/6)    |                      |               | 0.305      | 0.149                | 0.212          | 0.105          |
| r Ind()                 |             |            | (0.519)    | 4.000***             |               | (0.514)    | (0.511)              | (0.495)        | (0.491)        |
| $Exp^{ma}(y)$           |             |            |            | 4.333                |               |            | 4.216                | 3.92/****      | 3./82          |
|                         |             |            |            | (0.632)              |               |            | (0.628)              | (0.604)        | (0.589)        |
| Firm controls           | No          | No         | No         | No                   | No            | No         | No                   | Yes            | Yes            |
| Board controls          | No          | No         | No         | No                   | No            | No         | No                   | No             | Yes            |
| Year FE                 | Yes         | Yes        | Yes        | Yes                  | Yes           | Yes        | Yes                  | Yes            | Yes            |
| Firm FE                 | Yes         | Yes        | Yes        | Yes                  | Yes           | Yes        | Yes                  | Yes            | Yes            |
| Observations            | 21,461      | 21,461     | 21,461     | 21,461               | 21,461        | 21,461     | 21,461               | 21,461         | 21,461         |
| Adjusted K-             | 0.821       | 0.822      | 0.821      | 0.823                | 0.822         | 0.822      | 0.824                | 0.82/          | 0.830          |
| Panel B: E score        | e           |            |            |                      |               |            |                      |                |                |
| $Exp^{Brd}(y)$          | 1.439***    |            |            |                      | $1.271^{***}$ | 1.251***   | 0.738**              | 0.689**        | $0.567^{*}$    |
|                         | (0.333)     |            |            |                      | (0.329)       | (0.329)    | (0.314)              | (0.309)        | (0.308)        |
| $Exp^{Int}(y)$          |             | 1.451***   |            |                      | 1.352***      | 1.343***   | 1.094***             | 1.029***       | 0.900***       |
| 1 () /                  |             | (0.282)    |            |                      | (0.280)       | (0.281)    | (0.272)              | (0.264)        | (0.261)        |
| $Exp^{Loc}(v)$          |             | (          | 0.834      |                      | (             | 0.683      | -0.040               | 0.316          | 0.304          |
|                         |             |            | (0.599)    |                      |               | (0.595)    | (0.588)              | (0.566)        | (0.556)        |
| $Fxn^{Ind}(y)$          |             |            | (0.0777)   | 5 667***             |               | (0.070)    | 5 422***             | 5 660***       | 5 619***       |
| Lxp ())                 |             |            |            | (0.468)              |               |            | (0.476)              | (0.465)        | (0.461)        |
| Firm controls           | No          | No         | No         | (0. <del>4</del> 00) | No            | No         | (0. <del>1</del> 70) | (0.403)<br>Voc | (0.401)<br>Voc |
| FILLI COLLIDIS          | No          | No         | No         | No                   | No            | No         | No                   | ies            | Vec            |
| Board controls          | INO<br>Ve e | INO<br>Vez | INO<br>Vez | INO<br>Vez           | INO<br>Ve e   | INO<br>Vez | INO<br>Vez           | INO<br>Vez     | Yes            |
| Year FE                 | Yes         | Yes        | Yes        | Yes                  | Yes           | Yes        | Yes                  | Yes            | Yes            |
| Firm FE                 | Yes         | Yes        | Yes        | Yes                  | Yes           | Yes        | Yes                  | Yes            | Yes            |
| Observations            | 21,461      | 21,461     | 21,461     | 21,461               | 21,461        | 21,461     | 21,461               | 21,461         | 21,461         |
| Adjusted R <sup>2</sup> | 0.792       | 0.792      | 0.791      | 0.798                | 0.793         | 0.793      | 0.798                | 0.803          | 0.805          |
| Panel C: S score        | <u>م</u>    |            |            |                      |               |            |                      |                |                |
| $Exp^{Brd}(y)$          | 0 070***    |            |            |                      | 0 01 8***     | 0 005***   | 0.8/1***             | 0 711***       | 0.618***       |
| Exp (y)                 | (0.970      |            |            |                      | (0.910        | (0,903     | (0,041)              | (0.210)        | (0.220)        |
| Exertification          | (0.224)     | 0 700***   |            |                      | 0.762***      | 0.754***   | 0.726***             | 0.210)         | (0.220)        |
| Exp (y)                 |             | 0.790      |            |                      | 0.703         | 0.754      | 0.720                | 0.036          | 0.534          |
| E Loc()                 |             | (0.187)    | 0 776      |                      | (0.186)       | (0.186)    | (0.185)              | (0.183)        | (0.184)        |
| $Exp^{loc}(y)$          |             |            | 0.776      |                      |               | 0.643      | 0.388                | 0.326          | 0.348          |
| - Ind ( )               |             |            | (0.529)    |                      |               | (0.523)    | (0.521)              | (0.513)        | (0.513)        |
| $Exp^{ma}(y)$           |             |            |            | 2.787***             |               |            | 2.611***             | 2.111***       | 2.025***       |
|                         |             |            |            | (0.585)              |               |            | (0.583)              | (0.573)        | (0.572)        |
| Firm controls           | No          | No         | No         | No                   | No            | No         | No                   | Yes            | Yes            |
| Board controls          | No          | No         | No         | No                   | No            | No         | No                   | No             | Yes            |
| Year FE                 | Yes         | Yes        | Yes        | Yes                  | Yes           | Yes        | Yes                  | Yes            | Yes            |
| Firm FE                 | Yes         | Yes        | Yes        | Yes                  | Yes           | Yes        | Yes                  | Yes            | Yes            |
| Observations            | 21 461      | 21 461     | 21 461     | 21 461               | 21 461        | 21 461     | 21 461               | 21 461         | 21 461         |
| Adjusted R <sup>2</sup> | 0 705       | 0 705      | 0 704      | 0 705                | 0 705         | 0 705      | 0 706                | 0 700          | 0 700          |
| i iujusicu n            | 0./75       | 0./75      | 0.774      | 0.773                | 0./73         | 0.773      | 0.770                | 0./77          | 0./ 77         |
| Panel D: G scor         | e           |            |            |                      |               |            |                      |                |                |
| $Exp^{Brd}(y)$          | 0.628**     |            |            |                      | 0.611**       | 0.604**    | $0.512^{*}$          | 0.441          | 0.312          |
|                         | (0.289)     |            |            |                      | (0.289)       | (0.288)    | (0.287)              | (0.285)        | (0.281)        |
| $Exp^{Int}(y)$          |             | 0.702***   |            |                      | 0.693***      | 0.689***   | 0.658***             | 0.598***       | 0.402*         |
|                         |             | (0.220)    |            |                      | (0.219)       | (0.219)    | (0.217)              | (0.215)        | (0.211)        |
| $Exp^{Loc}(v)$          |             |            | 0.778      |                      |               | 0.737      | 0.693                | 0.746          | 0.618          |
|                         |             |            | (0.598)    |                      |               | (0.597)    | (0.595)              | (0.596)        | (0.590)        |
| $Exp^{Ind}(y)$          |             |            | ()         | 2.816***             |               | ()         | 2.673***             | 2.570***       | 2.468***       |
| DAP (J)                 |             |            |            | (0.803)              |               |            | (0.800)              | (0.796)        | (0 776)        |
| Firm controls           | No          | No         | No         | (0.003)<br>No        | No            | No         | (0.000)<br>No        | (0.790)<br>Vec | (0.770)<br>Vec |
| Poord controls          | No          | No         | No         | No                   | No            | No         | No                   | 1C5            | Vec            |
| Voor EE                 | 1NO<br>V    | 1NO<br>V   | 1NO<br>V   | 1NO<br>V             | 1NO<br>V      | 1NO<br>V   | 1NO<br>V             | 1NO<br>V       | ies<br>Ve-     |
| IEAL LE                 | res         | res        | res        | res                  | res           | res        | res                  | res            | res            |
| FIRM FE                 | Yes         | Yes        | Yes        | Yes                  | Yes           | Yes        | Yes                  | Yes            | Yes            |
| Observations            | 21,461      | 21,461     | 21,461     | 21,461               | 21,461        | 21,461     | 21,461               | 21,461         | 21,461         |
| Adjusted $R^2$          | 0.652       | 0.652      | 0.651      | 0.652                | 0.652         | 0.652      | 0.653                | 0.654          | 0.660          |

Notes: This table presents the results of a series of regressions that examine the impact of exposure to ESG measures on ESG scores. The financial controls include lagged values of analyst coverage, B/M ratio, firm size, leverage, stock return, and Tobin's Q. The board controls consist of current values for board achievements, board age, board diversity, board graduate education, board independence, board interlocking, and board size. We detail how we construct each variable in the Internet Appendix. Panels A, B, C, and D present the estimated coefficients for *ESG*, *E*, *S*, and *G*, respectively. Standard errors clustered at the firm level are shown in parentheses. Significance: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01.

| Peers             |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Interlocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (1)<br><i>ESG</i> | (2)<br><i>E</i>                                                                                                                                                                | (3)<br><i>S</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4)<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (5)<br><i>ESG</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (6)<br><i>E</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (7)<br><i>S</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (8)<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 0.699***          | 1.269**                                                                                                                                                                        | 0.633**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.457**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.637**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.620***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| (0.254)           | (0.521)                                                                                                                                                                        | (0.298)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.187)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.313)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.220)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.282)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 0.516***          | 0.854***                                                                                                                                                                       | 0.534***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.400*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.484**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.508**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.518^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| (0.159)           | (0.265)                                                                                                                                                                        | (0.184)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.211)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.206)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.432)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.247)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.295)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 0.155             | 0.272                                                                                                                                                                          | 0.348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| (0.492)           | (0.557)                                                                                                                                                                        | (0.513)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.591)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.492)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.557)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.513)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.591)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 3.765***          | 5.524***                                                                                                                                                                       | 2.024***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.430***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.784***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.691***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.026***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.460***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| (0.589)           | (0.464)                                                                                                                                                                        | (0.572)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.778)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.589)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.461)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.572)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.776)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Yes               | Yes                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Yes               | Yes                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Yes               | Yes                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Yes               | Yes                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 21,461<br>0.048   | 21,461<br>0.062                                                                                                                                                                | 21,461<br>0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21,461<br>0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21,461<br>0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21,461<br>0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21,461<br>0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21,461<br>0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                   | (1)<br><i>ESG</i><br>0.699***<br>(0.254)<br>0.516***<br>(0.159)<br>0.155<br>(0.492)<br>3.765***<br>(0.589)<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>21,461<br>0.048 | Pe           (1)         (2)           ESG         E           0.699***         1.269**           (0.254)         (0.521)           0.516**         0.854**           (0.159)         (0.265)           0.155         0.272           (0.492)         (0.557)           3.765**         5.524**           (0.589)         (0.464)           Yes         Yes           Yes         Yes | Peers           (1)         (2)         (3)           ESG         E         S           0.699***         1.269**         0.633**           (0.254)         (0.521)         (0.298)           0.516**         0.854**         0.534**           (0.159)         (0.265)         (0.184)           0.155         0.272         0.348           (0.492)         (0.557)         (0.513)           3.765**         5.524**         2.024**           (0.589)         (0.464)         (0.572)           Yes         Yes         Yes           Yes | Peers(1)(2)(3)(4) $ESG$ $E$ $S$ $G$ 0.699***1.269**0.633**0.602(0.254)(0.521)(0.298)(0.402)0.516**0.854***0.534**0.400*(0.159)(0.265)(0.184)(0.211)0.1550.2720.3480.608(0.492)(0.557)(0.513)(0.591)3.765**5.524**2.024**2.430***(0.589)(0.464)(0.572)(0.778)YesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYes <td><math display="block">\begin{array}{ c c c } \hline \mbox{Peers} &amp; \hline \mbox{Peers} &amp; \hline \mbox{(1)} &amp; (2) &amp; (3) &amp; (4) &amp; (5) \\ \hline \mbox{ESG} &amp; E &amp; S &amp; G &amp; ESG \\ \hline \mbox{0.699}^{***} &amp; 1.269^{**} &amp; 0.633^{**} &amp; 0.602 &amp; 0.457^{**} \\ (0.254) &amp; (0.521) &amp; (0.298) &amp; (0.402) &amp; (0.187) \\ 0.516^{**} &amp; 0.854^{***} &amp; 0.534^{***} &amp; 0.400^{*} &amp; 0.484^{**} \\ (0.159) &amp; (0.265) &amp; (0.184) &amp; (0.211) &amp; (0.206) \\ 0.155 &amp; 0.272 &amp; 0.348 &amp; 0.608 &amp; 0.165 \\ (0.492) &amp; (0.557) &amp; (0.513) &amp; (0.591) &amp; (0.492) \\ 3.765^{***} &amp; 5.524^{***} &amp; 2.024^{***} &amp; 2.430^{***} &amp; 3.784^{***} \\ (0.589) &amp; (0.464) &amp; (0.572) &amp; (0.778) &amp; (0.589) \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes &amp; Yes \\ Yes &amp; Yes \\ Yes &amp; Yes \\ Yes &amp; Yes \\ Yes &amp; Yes &amp; Yes &amp;</math></td> <td><math display="block">\begin{array}{ c c c c c } \hline \mbox{Peers} &amp; \mbox{Inter} \\ \hline \mbox{(1)} &amp; (2) &amp; (3) &amp; (4) &amp; (5) &amp; (6) \\ \hline \mbox{ESG} &amp; E &amp; S &amp; G &amp; \mbox{ESG} &amp; E \\ \hline \mbox{0.699}^{***} &amp; 1.269^{**} &amp; 0.633^{**} &amp; 0.602 &amp; 0.457^{**} &amp; 0.637^{**} \\ \hline \mbox{(0.254)} &amp; (0.521) &amp; (0.298) &amp; (0.402) &amp; (0.187) &amp; (0.313) &amp; 0.516^{**} &amp; 0.854^{***} &amp; 0.534^{***} &amp; 0.400^{*} &amp; 0.484^{**} &amp; 0.225 \\ \hline \mbox{(0.159)} &amp; (0.265) &amp; (0.184) &amp; (0.211) &amp; (0.206) &amp; (0.432) &amp; 0.155 &amp; 0.272 &amp; 0.348 &amp; 0.608 &amp; 0.165 &amp; 0.324 \\ \hline \mbox{(0.492)} &amp; (0.557) &amp; (0.513) &amp; (0.591) &amp; (0.492) &amp; (0.557) &amp; 0.513 &amp; 0.591) &amp; (0.492) &amp; (0.557) &amp; 0.513 &amp; 0.591 &amp; 0.492) &amp; (0.557) &amp; 0.513 &amp; 0.591 &amp; 0.492 &amp; 0.557 &amp; 0.513 &amp; 0.591 &amp; 0.492 &amp; 0.589 &amp; 0.461 &amp; 0.589 &amp; 0.589 &amp; 0.580 &amp; </math></td> <td><math display="block"> \begin{array}{ c c c c } \hline \mbox{Peers} &amp; \mbox{Interbers} \\ \hline (1) &amp; (2) &amp; (3) &amp; (4) &amp; (5) &amp; (6) &amp; (7) \\ \mbox{ESG} &amp; E &amp; S &amp; G &amp; ESG &amp; E &amp; S \\ \hline (5) &amp; (6) &amp; (7) &amp; (5) &amp; (6) &amp; (7) \\ \mbox{ESG} &amp; E &amp; S &amp; (6) &amp; (7) &amp; (6) &amp; (7) \\ \mbox{ESG} &amp; (6) &amp; (6)</math></td> | $\begin{array}{ c c c } \hline \mbox{Peers} & \hline \mbox{Peers} & \hline \mbox{(1)} & (2) & (3) & (4) & (5) \\ \hline \mbox{ESG} & E & S & G & ESG \\ \hline \mbox{0.699}^{***} & 1.269^{**} & 0.633^{**} & 0.602 & 0.457^{**} \\ (0.254) & (0.521) & (0.298) & (0.402) & (0.187) \\ 0.516^{**} & 0.854^{***} & 0.534^{***} & 0.400^{*} & 0.484^{**} \\ (0.159) & (0.265) & (0.184) & (0.211) & (0.206) \\ 0.155 & 0.272 & 0.348 & 0.608 & 0.165 \\ (0.492) & (0.557) & (0.513) & (0.591) & (0.492) \\ 3.765^{***} & 5.524^{***} & 2.024^{***} & 2.430^{***} & 3.784^{***} \\ (0.589) & (0.464) & (0.572) & (0.778) & (0.589) \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes & Yes \\ Yes & Yes & Yes & Yes & Yes & Yes \\ Yes & Yes \\ Yes & Yes \\ Yes & Yes \\ Yes & Yes & Yes &$ | $\begin{array}{ c c c c c } \hline \mbox{Peers} & \mbox{Inter} \\ \hline \mbox{(1)} & (2) & (3) & (4) & (5) & (6) \\ \hline \mbox{ESG} & E & S & G & \mbox{ESG} & E \\ \hline \mbox{0.699}^{***} & 1.269^{**} & 0.633^{**} & 0.602 & 0.457^{**} & 0.637^{**} \\ \hline \mbox{(0.254)} & (0.521) & (0.298) & (0.402) & (0.187) & (0.313) & 0.516^{**} & 0.854^{***} & 0.534^{***} & 0.400^{*} & 0.484^{**} & 0.225 \\ \hline \mbox{(0.159)} & (0.265) & (0.184) & (0.211) & (0.206) & (0.432) & 0.155 & 0.272 & 0.348 & 0.608 & 0.165 & 0.324 \\ \hline \mbox{(0.492)} & (0.557) & (0.513) & (0.591) & (0.492) & (0.557) & 0.513 & 0.591) & (0.492) & (0.557) & 0.513 & 0.591 & 0.492) & (0.557) & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.557 & 0.513 & 0.591 & 0.492 & 0.589 & 0.461 & 0.589 & 0.461 & 0.589 & 0.461 & 0.589 & 0.461 & 0.589 & 0.461 & 0.589 & 0.461 & 0.589 & 0.461 & 0.589 & 0.589 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & 0.580 & $ | $ \begin{array}{ c c c c } \hline \mbox{Peers} & \mbox{Interbers} \\ \hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\ \mbox{ESG} & E & S & G & ESG & E & S \\ \hline (5) & (6) & (7) & (5) & (6) & (7) \\ \mbox{ESG} & E & S & (6) & (7) & (6) & (7) \\ \mbox{ESG} & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6) & (6)$ |  |  |

Table 5: Bartik IV regressions

Notes: This table shows the results of estimating instrumental variable regressions using shift-share instruments for exposures. The Bartik-like instruments are constructed by replacing, in the exposure formula, the ESG score of the neighboring firm by the industry mean ESG score of the industry in which the neighboring firm operates. Standard errors clustered at the firm level are shown in parentheses. Significance: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01.

#### Table 6: High and low performance

|                         |          | R        | DA       |          |          | R        | ЭE       |             |          | M/B      | Ratio    |             |
|-------------------------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|-------------|
|                         | (1)      | (2)      | (3)      | (4)      | (5)      | (6)      | (7)      | (8)         | (9)      | (10)     | (11)     | (12)        |
|                         | ESG      | Ε        | S        | G        | ESG      | Ε        | S        | G           | ESG      | Ε        | S        | G           |
| $Exp^{Brd-HP}(y)$       | 0.286*   | 0.347    | 0.501*** | 0.084    | 0.295*   | 0.366    | 0.496*** | 0.102       | 0.335**  | 0.513**  | 0.323**  | 0.431**     |
|                         | (0.157)  | (0.255)  | (0.185)  | (0.211)  | (0.157)  | (0.257)  | (0.185)  | (0.209)     | (0.141)  | (0.216)  | (0.157)  | (0.189)     |
| $Exp^{Brd-LP}(y)$       | 0.177    | 0.104    | -0.012   | 0.542*** | 0.162    | 0.063    | 0.002    | 0.506***    | 0.218    | -0.052   | 0.250    | 0.329       |
|                         | (0.129)  | (0.208)  | (0.148)  | (0.183)  | (0.129)  | (0.207)  | (0.147)  | (0.182)     | (0.152)  | (0.256)  | (0.175)  | (0.218)     |
| $Exp^{Int}(y)$          | 0.517*** | 0.910*** | 0.534*** | 0.369*   | 0.517*** | 0.911*** | 0.533*** | $0.371^{*}$ | 0.507*** | 0.899*** | 0.522*** | $0.375^{*}$ |
|                         | (0.159)  | (0.262)  | (0.185)  | (0.211)  | (0.159)  | (0.262)  | (0.185)  | (0.211)     | (0.159)  | (0.262)  | (0.185)  | (0.210)     |
| $Exp^{Loc}(y)$          | 0.167    | 0.317    | 0.353    | 0.605    | 0.166    | 0.317    | 0.354    | 0.603       | 0.159    | 0.321    | 0.361    | 0.587       |
|                         | (0.491)  | (0.555)  | (0.513)  | (0.590)  | (0.491)  | (0.556)  | (0.513)  | (0.590)     | (0.490)  | (0.554)  | (0.513)  | (0.590)     |
| $Exp^{Ind}(y)$          | 3.760*** | 5.647*** | 2.021*** | 2.386*** | 3.762*** | 5.651*** | 2.020*** | 2.392***    | 3.747*** | 5.625*** | 2.006*** | 2.383***    |
|                         | (0.590)  | (0.460)  | (0.573)  | (0.777)  | (0.590)  | (0.460)  | (0.573)  | (0.777)     | (0.590)  | (0.460)  | (0.572)  | (0.776)     |
| Firm controls           | Yes         | Yes      | Yes      | Yes      | Yes         |
| Board controls          | Yes         | Yes      | Yes      | Yes      | Yes         |
| Year FE                 | Yes         | Yes      | Yes      | Yes      | Yes         |
| Firm FE                 | Yes         | Yes      | Yes      | Yes      | Yes         |
| Observations            | 21,461   | 21,461   | 21,461   | 21,461   | 21,461   | 21,461   | 21,461   | 21,461      | 21,461   | 21,461   | 21,461   | 21,461      |
| Adjusted R <sup>2</sup> | 0.830    | 0.805    | 0.799    | 0.660    | 0.830    | 0.805    | 0.799    | 0.660       | 0.830    | 0.805    | 0.799    | 0.660       |

Notes: This table shows the results of estimating an augmented baseline specification by distinguishing links with peer firms based on their financial performance. Specifically, we differentiate between peers that had positive industry-adjusted financial performance in the past three years and those with non-positive financial performance. We then compute two new sub-measures:  $Exp_{it}^{Brd-HP}(y)$  and  $Exp_{it}^{Brd-LP}(y)$ , which capture the peer exposure to ESG through high-performance and low-performance peer firms, respectively. Performance is measured using return on assets (ROA), return on equity (ROE) and Market-to-Book Ratio (M/B Ratio). Standard errors clustered at the firm level are shown in parentheses. Significance: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01.

|                   |          | Board    | d Age    |          |          | Interconn | ectedness |          |
|-------------------|----------|----------|----------|----------|----------|-----------|-----------|----------|
|                   | (1)      | (2)      | (3)      | (4)      | (5)      | (6)       | (7)       | (8)      |
|                   | ESG      | E        | S        | G        | ESG      | E         | S         | G        |
| $Exp^{Brd-HI}(y)$ | 0.306**  | 0.502**  | 0.269    | 0.228    | 0.371**  | 0.128     | 0.323*    | 0.373*   |
|                   | (0.144)  | (0.225)  | (0.169)  | (0.205)  | (0.153)  | (0.256)   | (0.168)   | (0.214)  |
| $Exp^{Brd-LI}(y)$ | 0.189    | -0.156   | 0.379**  | 0.382**  | 0.009    | 0.191     | 0.035     | 0.194    |
|                   | (0.139)  | (0.236)  | (0.160)  | (0.186)  | (0.126)  | (0.167)   | (0.144)   | (0.195)  |
| $Exp^{Int}(y)$    | 0.511*** | 0.918*** | 0.515*** | 0.376*   | 0.514*** | 0.921***  | 0.530***  | 0.383*   |
|                   | (0.159)  | (0.262)  | (0.185)  | (0.210)  | (0.159)  | (0.262)   | (0.185)   | (0.211)  |
| $Exp^{Loc}(y)$    | 0.166    | 0.319    | 0.357    | 0.601    | 0.170    | 0.319     | 0.368     | 0.601    |
|                   | (0.491)  | (0.556)  | (0.513)  | (0.590)  | (0.490)  | (0.556)   | (0.512)   | (0.589)  |
| $Exp^{Ind}(y)$    | 3.761*** | 5.657*** | 2.003*** | 2.412*** | 3.775*** | 5.652***  | 2.033***  | 2.423*** |
|                   | (0.591)  | (0.461)  | (0.573)  | (0.777)  | (0.590)  | (0.460)   | (0.573)   | (0.777)  |
| Firm controls     | Yes      | Yes      | Yes      | Yes      | Yes      | Yes       | Yes       | Yes      |
| Board controls    | Yes      | Yes      | Yes      | Yes      | Yes      | Yes       | Yes       | Yes      |
| Year FE           | Yes      | Yes      | Yes      | Yes      | Yes      | Yes       | Yes       | Yes      |
| Firm FE           | Yes      | Yes      | Yes      | Yes      | Yes      | Yes       | Yes       | Yes      |
| Observations      | 21,461   | 21,461   | 21,461   | 21,461   | 21,461   | 21,461    | 21,461    | 21,461   |
| Adjusted $R^2$    | 0.830    | 0.805    | 0.799    | 0.660    | 0.830    | 0.805     | 0.799     | 0.660    |

#### Table 7: Degree of influence of peers

Notes: This table presents the results of estimating an extended baseline specification by distinguishing links with peer firms based on the degree of influence of their boards. Specifically, we differentiate between peers with influential boards and those with less influential boards. We consider two measures of board influence: their average age, and the average number of connections directors have to other firms. The split of connections is based on the median of each influence indicator, resulting in two new sub-measures:  $Exp_{it}^{Brd-HI}(y)$  and  $Exp_{it}^{Brd-LI}(y)$ , which capture the peer exposure to ESG through the boards of influential and less influential peer firms, respectively. Standard errors clustered at the firm level are shown in parentheses. Significance: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01.

|                     | (1)      | (2)      | (3)      | (4)           |
|---------------------|----------|----------|----------|---------------|
|                     | ESG      | Ε        | S        | G             |
| $Exp^{Brd-Up}(y)$   | 0.152    | 0.208    | 0.038    | 0.142         |
|                     | (0.149)  | (0.233)  | (0.167)  | (0.228)       |
| $Exp^{Brd-Down}(y)$ | -0.057   | -0.549** | 0.051    | 0.090         |
|                     | (0.147)  | (0.231)  | (0.183)  | (0.211)       |
| $Exp^{Brd-H}(y)$    | 0.379**  | 1.065*** | 0.257    | 0.448**       |
|                     | (0.156)  | (0.254)  | (0.186)  | (0.220)       |
| $Exp^{Brd-UR}(y)$   | 0.130    | 0.161    | 0.114    | 0.024         |
|                     | (0.110)  | (0.190)  | (0.126)  | (0.158)       |
| $Exp^{Int}(y)$      | 0.505*** | 0.878*** | 0.527*** | $0.371^{*}$   |
|                     | (0.159)  | (0.261)  | (0.185)  | (0.210)       |
| $Exp^{Loc}(y)$      | 0.179    | 0.315    | 0.376    | 0.610         |
|                     | (0.491)  | (0.554)  | (0.514)  | (0.590)       |
| $Exp^{Ind}(y)$      | 3.719*** | 5.378*** | 1.999*** | $2.378^{***}$ |
|                     | (0.590)  | (0.455)  | (0.575)  | (0.776)       |
| Firm controls       | Yes      | Yes      | Yes      | Yes           |
| Board controls      | Yes      | Yes      | Yes      | Yes           |
| Year FE             | Yes      | Yes      | Yes      | Yes           |
| Firm FE             | Yes      | Yes      | Yes      | Yes           |
| Observations        | 21,461   | 21,461   | 21,461   | 21,461        |
| Adjusted $R^2$      | 0.830    | 0.805    | 0.799    | 0.660         |

Table 8: Upstream, downstream, horizontal and unrelated connections

Notes: This table presents the results of estimating an augmented baseline specification by distinguishing links with peer firms based on four types of relationships: suppliers (upstream), customers (downstream), industry peers (horizontal), and firms that are neither upstream, downstream, nor horizontally related (unrelated). These distinctions allow us to compute the following sub-measures:  $Exp_{it}^{Brd-Up}(y)$  for upstream positioned peer firms,  $Exp_{it}^{Brd-Down}(y)$  for downstream positioned peer firms,  $Exp_{it}^{Brd-UR}(y)$  for unrelated peer firms. Standard errors clustered at the firm level are shown in parentheses. Significance: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01.

|       |           | Top <i>E</i> -related | offenses |            |           | Top S-related | offenses |            |
|-------|-----------|-----------------------|----------|------------|-----------|---------------|----------|------------|
|       | N° events | Mean penalty          | SD       | N° treated | N° events | Mean penalty  | SD       | N° treated |
| 2005  | 15        | 195.5                 | 357.2    | 281        | 5         | 426.6         | 565.2    | 166        |
| 2006  | 9         | 31.0                  | 64.2     | 286        | 10        | 211.7         | 503.7    | 281        |
| 2007  | 11        | 476.1                 | 1,397.1  | 244        | 6         | 41.3          | 37.0     | 292        |
| 2008  | 10        | 9.9                   | 10.3     | 352        | 7         | 24.0          | 18.2     | 305        |
| 2009  | 12        | 27.9                  | 43.1     | 359        | 10        | 87.0          | 99.0     | 375        |
| 2010  | 18        | 26.0                  | 50.5     | 449        | 13        | 47.2          | 60.7     | 484        |
| 2011  | 13        | 78.1                  | 180.4    | 414        | 8         | 50.7          | 38.9     | 408        |
| 2012  | 21        | 20.9                  | 57.0     | 479        | 11        | 68.2          | 67.7     | 410        |
| 2013  | 21        | 94.5                  | 227.0    | 500        | 14        | 232.4         | 576.7    | 454        |
| 2014  | 19        | 23.7                  | 44.7     | 518        | 18        | 184.4         | 218.8    | 472        |
| 2015  | 21        | 307.7                 | 1,124.0  | 740        | 26        | 93.1          | 152.1    | 786        |
| 2016  | 13        | 78.9                  | 213.9    | 728        | 16        | 80.2          | 118.7    | 814        |
| 2017  | 11        | 44.0                  | 87.6     | 764        | 14        | 45.7          | 71.2     | 845        |
| 2018  | 15        | 87.5                  | 216.2    | 893        | 14        | 144.0         | 208.9    | 908        |
| 2019  | 5         | 6.8                   | 3.9      | 351        | 12        | 565.2         | 1,414.4  | 854        |
| Total | 214       | 105.4                 | 497.3    | 7,358      | 184       | 146.8         | 442.0    | 7,854      |

Table 9: Top E and S related offenses over time

Notes: Amounts in millions of dollars.

|                         |                     | Paramet             | ric TWFE            |                     |          | Non-paran | netric TWFE | :         |               | Callaway-S   | ant'Anna    |              |
|-------------------------|---------------------|---------------------|---------------------|---------------------|----------|-----------|-------------|-----------|---------------|--------------|-------------|--------------|
|                         | (1)                 | (2)                 | (3)                 | (4)                 | (5)      | (6)       | (7)         | (8)       | (9)           | (10)         | (11)        | (12)         |
|                         | Ε                   | Ε                   | S                   | S                   | Ε        | Ε         | S           | S         | Ε             | Ε            | S           | S            |
| PostEvent               | 3.733***<br>(0.809) | 2.747***<br>(0.727) | 2.575***<br>(0.529) | 1.792***<br>(0.525) |          |           |             |           |               |              |             |              |
| t - 7                   |                     |                     |                     |                     | -2.634   | -3.866    | 0.851       | -2.015    | -0.560        | 1.101        | -2.713*     | -0.765       |
|                         |                     |                     |                     |                     | (3.259)  | (4.144)   | (2.306)     | (1.803)   | (1.215)       | (2.121)      | (1.522)     | (0.907)      |
| t - 6                   |                     |                     |                     |                     | -1.706   | -6.386*   | 1.250       | -1.875    | 0.353         | -0.200       | -0.001      | 0.929        |
|                         |                     |                     |                     |                     | (2.966)  | (3.397)   | (1.960)     | (1.646)   | (0.933)       | (1.899)      | (1.386)     | (0.941)      |
| t — 5                   |                     |                     |                     |                     | -2.767   | -5.489*   | 0.466       | -0.790    | -0.930        | 0.102        | -0.424      | 0.110        |
|                         |                     |                     |                     |                     | (2.580)  | (2.974)   | (1.739)     | (1.439)   | (0.813)       | (1.211)      | (0.926)     | (0.786)      |
| t-4                     |                     |                     |                     |                     | -0.065   | -4.746**  | -0.879      | -1.290    | -0.025        | 1.932        | 0.316       | 0.459        |
|                         |                     |                     |                     |                     | (2.090)  | (2.302)   | (1.338)     | (1.131)   | (0.889)       | (1.324)      | (0.983)     | (0.772)      |
| t - 3                   |                     |                     |                     |                     | -2.419*  | -6.381*** | -2.025**    | -2.322*** | 0.348         | 0.279        | -0.128      | -0.657       |
|                         |                     |                     |                     |                     | (1.344)  | (1.998)   | (0.980)     | (0.861)   | (0.801)       | (1.547)      | (0.865)     | (0.731)      |
| t-2                     |                     |                     |                     |                     | -2.173** | -3.194*** | -1.651***   | -1.498*** | 0.479         | -0.037       | 0.312       | 1.343**      |
|                         |                     |                     |                     |                     | (0.933)  | (1.051)   | (0.632)     | (0.571)   | (0.602)       | (1.448)      | (0.748)     | (0.676)      |
| t - 1                   |                     |                     |                     |                     |          |           |             |           | 0.985         | $2.526^{*}$  | $1.075^{*}$ | 0.884        |
|                         |                     |                     |                     |                     |          |           |             |           | (0.615)       | (1.338)      | (0.628)     | (0.561)      |
| t                       |                     |                     |                     |                     | -1.103** | 0.427     | 0.130       | 0.097     | $2.710^{***}$ | $1.880^{**}$ | 1.083**     | 0.284        |
|                         |                     |                     |                     |                     | (0.542)  | (0.537)   | (0.432)     | (0.363)   | (0.499)       | (0.752)      | (0.505)     | (0.444)      |
| t + 1                   |                     |                     |                     |                     | 0.625    | 1.844***  | 0.879       | 0.230     | 3.864***      | 3.868***     | 2.901***    | 0.492        |
|                         |                     |                     |                     |                     | (0.729)  | (0.616)   | (0.567)     | (0.461)   | (0.757)       | (1.030)      | (0.728)     | (0.627)      |
| t + 2                   |                     |                     |                     |                     | 2.704*** | 2.146***  | 2.202***    | 1.565***  | 7.274***      | 4.361***     | 5.379***    | 1.573**      |
|                         |                     |                     |                     |                     | (0.864)  | (0.654)   | (0.615)     | (0.580)   | (1.199)       | (1.213)      | (0.929)     | (0.787)      |
| t + 3                   |                     |                     |                     |                     | 4.275*** | 3.274***  | 3.052***    | 2.442***  | 9.398***      | 6.791***     | 6.988***    | 2.502***     |
|                         |                     |                     |                     |                     | (0.982)  | (0.734)   | (0.714)     | (0.683)   | (1.565)       | (1.617)      | (1.090)     | (0.938)      |
| t + 4                   |                     |                     |                     |                     | 5.398*** | 3.588***  | 3.385***    | 2.482***  | 10.775***     | 7.440***     | 7.512***    | $2.128^{**}$ |
|                         |                     |                     |                     |                     | (1.099)  | (0.804)   | (0.827)     | (0.777)   | (1.980)       | (1.800)      | (1.360)     | (1.083)      |
| t + 5                   |                     |                     |                     |                     | 5.954*** | 3.908***  | 4.311***    | 2.965***  | 10.926***     | 8.560***     | 7.892***    | 2.309        |
|                         |                     |                     |                     |                     | (1.262)  | (0.920)   | (0.940)     | (0.898)   | (2.491)       | (2.073)      | (1.826)     | (1.421)      |
| t + 6                   |                     |                     |                     |                     | 7.288*** | 4.722***  | 4.488***    | 3.602***  | 10.285***     | 8.681***     | 8.378***    | 3.126        |
|                         |                     |                     |                     |                     | (1.400)  | (1.150)   | (1.053)     | (1.041)   | (3.056)       | (3.316)      | (2.222)     | (2.051)      |
| t + 7                   |                     |                     |                     |                     | 7.977*** | 5.264***  | 4.757***    | 4.070***  | 6.825*        | 10.003***    | 7.944***    | 3.339        |
|                         |                     |                     |                     |                     | (1.543)  | (1.218)   | (1.170)     | (1.176)   | (3.830)       | (3.129)      | (2.636)     | (2.418)      |
| Observations            | 26,133              | 26,133              | 26,133              | 26,133              | 26,133   | 26,133    | 26,133      | 26,133    |               |              |             |              |
| Adjusted $\mathbb{R}^2$ | 0.773               | 0.773               | 0.772               | 0.771               | 0.775    | 0.774     | 0.773       | 0.772     |               |              |             |              |

| Table 101 Difference in anielences countations | Table 10: | Difference | -in-differences | estimations |
|------------------------------------------------|-----------|------------|-----------------|-------------|
|------------------------------------------------|-----------|------------|-----------------|-------------|

Notes: Standard errors clustered at the firm level. Significance: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01.



Figure 2: Difference-in-differences - Standard two-way fixed effects regression

Figure 3: Difference-in-differences - Callaway and Sant'Anna

